. 24/7 Space News .
Nanotube 'Peapods' Have Tunable Electronic Properties

The illustration depicts the atomic structure of a single-wall carbon nanotube peapod (which has C-60 molecules encapsulated inside) with superimposed electron waves. The nanostructure was mapped using a scanning tunneling microscope. This work demonstrates that encapsulation of molecules is a viable route to controlling the motion of electrons in carbon nanotubes, which are the heart of many proposed approaches to nanoscale devices. Credit: D. Hornbaker and A. Yazdand
Urbana-Champaign - Jan 28, 2002
First came fullerenes, those cage-like molecules of 60 carbon atoms bound in a ball. Then came long, thin soda straws of carbon atoms called nanotubes. Now there are fullerenes nested within nanotubes, like so many peas in a pod.

Scientists recently discovered that these nanoscopic peapods -- the latest class of nanomaterials created by filling the cores of single-wall nanotubes -- have tunable electronic properties.

For shrinking circuits, nanotubes are the silicon of nanoelectronics, and the new findings could have far-reaching implications for the fabrication of single-molecule-based devices, such as diodes, transistors and memory elements.

"Our measurements show that encapsulation of molecules can dramatically modify the electronic properties of single-wall nanotubes," said Ali Yazdani, a professor of physics at the University of Illinois and senior author of a paper to appear in the journal Science, as part of the Science Express Web site, on Jan. 3. "We also show that an ordered array of encapsulated molecules can be used to engineer electron motion inside nanotubes in a predictable way."

The new findings point to the future design of other hybrid nanoscale structures that could be tailored for a particular electronic function. Much like the dopant added to silicon, which turns beach sand into today's computer chips, the encapsulated molecules could make nanotubes more attractive as the material of choice for future nanocircuits.

To explore the properties of these novel nanostructures, Yazdani and UI graduate student Daniel Hornbaker used a low-temperature scanning tunneling microscope that they built at the UI. With their high resolution STM, the researchers were able to image the physical structure of individual peapods and to map the motion of electrons inside them.

The peapod samples were produced using molecular self-assembly techniques by University of Pennsylvania materials science professor David Luzzi and his group at Pennsylvania, who were the first to synthesize these complex nanostructures.

By examining STM images of individual peapods, the UI researchers found that the encapsulated fullerenes modify the electronic properties of the nanotube without affecting its atomic structure.

"In contrast to unfilled nanotubes, peapods exhibit additional electronic features that are strongly dependent on the location along the tube," Yazdani said. "By mapping electron waves of different energies inside these nanoscale structures, we can begin to unravel the complex interaction in these systems, and better understand their electronic properties."

To further demonstrate the importance of the C-60 molecules in determining the electronic properties of the peapods, the researchers used the STM to manipulate the encapsulated molecules.

With this unique experimental technique, they were able to compare the measurements performed on the same section of nanotube with and without the encapsulated molecules.

How the measured electronic properties of the peapod differed in the two cases provides insight into what could become design rules for hybrid structures having a specific type of electronic functionality.

Because the local electronic properties of single-wall nanotubes can be selectively modified by the encapsulation of a single molecule, for example, the technique might one day be used to define on-tube electronic devices.

The UI group collaborated with University of Pennsylvania physics professor Gene Mele, who modeled the experimental findings.

"The encapsulated balls have a much stronger effect on the electronic structure of the tube than we had expected," Mele said. "Fortunately, we were saved by the high geometrical symmetry of these structures. That allowed us to develop a good model and in the end the physics turned out to be very intuitive and pretty."

The researchers speculate that the lessons learned in unraveling the properties of this complex nanostructure also may apply elsewhere.

"As the drive toward miniaturization of electronic devices continues, concepts such as symmetry of electronic states may be useful in controlling the electronic properties of individual nanostructures and for coupling them together," Yazdani said.

Related Links
University of Illinois at Urbana-Champaign
Search SpaceDaily
Subscribe To SpaceDaily Express

Superconductors That Work At Room Temperature
London - Nov 28, 2001
Tiny tubes of carbon may conduct electricity without any resistance, at temperatures stretching up past the boiling point of water. The tubes would be the first superconductors to work at room temperature. In a report to be published this week by New Scientist Guo-meng Zhao and Yong Sheng Wang of the University of Houston in Texas say they have found subtle signs of superconductivity. It wasn't zero resistance, but it's the closest anyone's got so far. "I think all the experimental results are consistent with superconductivity," Zhao says. "But we cannot rule out other explanations."

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.