. 24/7 Space News .
Scientists Follow Doomed Matter On A Ride Around A Black Hole

illustration only
New Orleans (SPX) Sep 10, 2004
Scientists have pieced together the journey of a bundle of doomed matter as it orbited a black hole four times, an observational first. Their technique provides a new method to measure the mass of a black hole; and this may enable the testing of Einstein's theory of gravity to a degree few thought possible.

A team led by Dr. Kazushi Iwasawa at the Institute of Astronomy (IoA) in Cambridge, England, followed the trail of hot gas over the course of a day as it whipped around the supermassive black hole roughly at the same distance the Earth orbits the Sun.

Quickened by the extreme gravity of the black hole, however, the orbit took about a quarter of a day instead of a year.

The scientists could calculate the mass of the black hole by plugging in the measurements for the energy of the light, its distance from the black hole, and the time it took to orbit the black hole - a marriage of Einstein's general relativity and good old-fashioned Keplerian physics.

Iwasawa and his colleague at the IoA, Dr. Giovanni Miniutti, present this result today during a Web-based press conference in New Orleans at the meeting of the High Energy Astrophysics Division of the American Astronomical Society.

Dr. Andrew Fabian of the IoA joins them on an article appearing in an upcoming issue of the Monthly Notices of the Royal Astronomical Society. The data is from the European Space Agency's XMM-Newton observatory.

The team studied a galaxy named NGC 3516, about 100 million light years away in the constellation Ursa Major, home to the Big Dipper (or, the Plough).

This galaxy is thought to harbour a supermassive black hole in its core. Gas in this central region glows in X-ray radiation as it is heated to millions of degrees under the force of the black hole's gravity.

XMM-Newton captured spectral features from light around the black hole, displayed on a spectrograph with spikes indicating certain energy levels, similar in appearance to the jagged lines of a cardiograph.

During the daylong observation, XMM captured a flare from excited gas orbiting the black hole as it whipped around four times. This was the crucial bit of information needed to measure the black hole mass.

The scientists already knew the distance of the gas from the black hole from its spectral feature. (The extent of gravitational redshift, or energy drain revealed by the spectral line, is related to how close an object is to a black hole.)

With an orbital time and distance, the scientists could pin down a mass measurement - between 10 million and 50 million solar masses, in agreement with values obtained with other techniques.

While the calculation is straightforward, the analysis to understand the orbital period of an X-ray flare is new and intricate. Essentially, the scientists detected a cycle repeated four times: a modulation in the light's intensity accompanied by an oscillation in the light's energy.

The energy and cycle observed fit the profile of light gravitationally redshifted (gravity stealing energy) and Doppler shifted (a gain and loss in energy as orbiting matter moves towards and away from us).

The analysis technique implies, to this science team's surprise, that the current generation of X-ray observatories can make significant gains in measuring black hole mass, albeit with long observations and black hole systems with long-lasting flares.

Building upon this information, proposed missions such as Constellation-X or XEUS can make deeper inroads to testing Einstein's math in the laboratory of extreme gravity.

Related Links
The X-Ray Analysis Technique
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Space Scopes Image Massive Black Hole Surrounded By Doughnut-Shaped Cloud
Greenbelt MD (SPX) Jul 21, 2004
Using ESA's Integral and XMM-Newton observatories, an international team of astronomers has found more evidence that massive black holes are surrounded by a doughnut-shaped gas cloud, called a torus.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.