Subscribe free to our newsletters via your
. 24/7 Space News .




SOLAR SCIENCE
Young sun's violent history solves meteorite mystery
by Staff Writers
Paris (ESA) Jul 08, 2014


An illustration of the wind blown by a newborn star. When the energetic particles hit the surrounding material, they may collide with atoms that are present in the star's environment, break them apart and produce new elements. Image courtesy ESA/ATG medialab. For a larger version of this image please go here.

Astronomers using ESA's Herschel space observatory to probe the turbulent beginnings of a Sun-like star have found evidence of mighty stellar winds that could solve a puzzling meteorite mystery in our own back yard.

In spite of their tranquil appearance in the night sky, stars are scorching furnaces that spring to life through tumultuous processes - and our 4.5 billion-year-old Sun is no exception. To glimpse its harsh early days, astronomers gather clues not only in the Solar System but also by studying young stars elsewhere in our Galaxy.

Using Herschel to survey the chemical composition of regions where stars are being born today, a team of astronomers has noticed that one object in particular is different.

The unusual source is a prolific stellar nursery called OMC2 FIR4, a clump of new stars embedded in a gaseous and dusty cloud near to the famous Orion Nebula.

"To our great surprise, we found that the proportion of two chemical species, one based on carbon and oxygen and the other on nitrogen, is much smaller in this object than in any other protostar we know," says Dr Cecilia Ceccarelli, of the Institute de Planetologie et d'Astrophysique de Grenoble, France, who lead the study with Dr Carsten Dominik of the University of Amsterdam in the Netherlands.

In an extremely cold environment, the measured proportion could arise by one of the two compounds freezing onto dust grains and becoming undetectable. However, at the relatively 'high' temperature of about -200 C found in star-forming regions like OMC2 FIR4, this should not occur.

"The most likely cause in this environment is a violent wind of very energetic particles, released by at least one of the embryonic stars taking shape in this proto-stellar cocoon," Dr Ceccarelli adds.

The most abundant molecule in star-forming clouds, hydrogen, can be broken apart by cosmic rays, energetic particles that permeate the entire Galaxy. The hydrogen ions then combine with other elements that are present - albeit only in trace amounts - in these clouds: carbon and oxygen, or nitrogen.

Normally, the nitrogen compound is also quickly destroyed, yielding more hydrogen for the carbon and oxygen compound. As a result, the latter is far more abundant in all known stellar nurseries.

Strangely enough, though, this was not the case for OMC2 FIR4, suggesting that an additional wind of energetic particles is destroying both chemical species, keeping their abundances more similar.

Astronomers think that a similarly violent wind of particles also gusted through the early Solar System, and this discovery might finally point to an explanation for the origin of a particular chemical element seen in meteorites.

Meteorites are the remains of interplanetary debris that survived the trip through our planet's atmosphere. These cosmic messengers are one of the few tools we have to directly probe the elements in our Solar System.

"Some elements detected in meteorites reveal that, long ago, these rocks contained a form of beryllium: this is quite puzzling, as we can't quite understand how it got there," explains Dr Dominik.

The formation of this isotope - beryllium-10 - in the Universe is an intricate puzzle of its own. Astronomers know that it is not produced in the interior of stars, like some other elements, nor in the supernova explosion that happens at the end of a massive star's life.

The majority of beryllium-10 was formed in collisions of very energetic particles with heavier elements like oxygen. But since this isotope decays very quickly into other elements, it must have been produced just before it was incorporated in the rocks that would later appear on Earth as meteorites.

In order to trigger these reactions and produce an amount of beryllium matching that recorded in meteorites, our own Sun must have blown a violent wind in its youth.

These new observations of OMC2 FIR4 give a very strong hint that it is possible for a young star to do this.

"Observing star-forming regions with Herschel not only provides us with a view on what happens beyond our cosmic neighbourhood, but it's also a crucial way to piece together the past of our own Sun and Solar System," says Goran Pilbratt, ESA's Herschel project scientist.

"Herschel finds evidence for stellar wind particles in a protostellar envelope: is this what happened to the young Sun?" by C. Ceccarelli et al. is published in The Astrophysical Journal Letters, July 2014.

.


Related Links
ESA Herschel
Solar Science News at SpaceDaily






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR SCIENCE
Puffing Sun Gives Birth To Reluctant Eruption
Washington DC (SPX) Jul 04, 2014
A suite of NASA's sun-gazing spacecraft have spotted an unusual series of eruptions in which a series of fast puffs forced the slow ejection of a massive burst of solar material from the sun's atmosphere. The eruptions took place over a period of three days, starting on Jan. 17, 2013. Nathalia Alzate, a solar scientist at the University of Aberystwyth in Wales, presented findings on what c ... read more


SOLAR SCIENCE
NASA LRO's Moon As Art Collection Is Revealed

Solar photons drive water off the moon

55-year old dark side of the moon mystery solved

New evidence supporting moon formation via collision of 2 planets

SOLAR SCIENCE
Rover Uses Arm to Study Several Rocks and Takes Panoramic Images

ADS complete heat shields for 2016 ExoMars mission

Martian salts must touch ice to make liquid water

First LDSD Test Flight a Success

SOLAR SCIENCE
Sun Sends More 'Tsunami Waves' to Voyager 1

Privately funded solar spacecraft to launch in 2016

Space Launch System Core Stage Passes Critical Design Review

Taiwan's tourism revenue hits record high in 2013

SOLAR SCIENCE
Chinese moon rover designer shooting for Mars

Yutu designer's bittersweet

Are China's Astronauts Moonbound

Chinese scientists prepare for lunar base life support system

SOLAR SCIENCE
Orbital Targets July 11 For ISS Commercial Resupply Mission

Space junk damages ISS US segment

NASA Television Coverage Set for Orbital-2 Mission to Space Station

Spot the Space Station looking at you

SOLAR SCIENCE
RUAG Space wins major Ariane 5 payload fairing contract

Final ATV loaded with cargo after integration on Ariane 5

Russia Launches Rokot Carrier Rocket with Three Satellites

Eco-Friendly 'Angara' Rocket Installed On Plesetsk Launch Pad

SOLAR SCIENCE
Newfound Frozen World Orbits in Binary Star System

Discovery expands search for Earth-like planets

Astronomers discover most Earth-like of all exoplanets

Mega-Earth in Draco Smashes Notions of Planetary Formation

SOLAR SCIENCE
ASC Signal Introduces Innovative Carbon-Fiber Antenna

Resolve Supplies Zoom Lenses for NASA Testing

With 'ribbons' of graphene, width matters

Even geckos can lose their grip




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.