Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
World record for the entanglement of twisted light quanta
by Staff Writers
Vienna, Austria (SPX) Nov 05, 2012


illustration only

To this end, the researchers developed a new method for entangling single photons which gyrate in opposite directions. This result is a first step towards entangling and twisting even macroscopic, spatially separated objects in two different directions.

The researchers at the Vienna Center for Quantum Science and Technology (VCQ), situated at the University of Vienna, and the Institute for Quantum Optics and Quantum Information (IQOQI) at the Austrian Academy of Sciences have were able to get their pioneering results published in the current issue of the renowned scientific journal Science.

Quantum physics is usually considered to be the theory of extremely lightweight objects, such as atoms or photons, or of exceptionally small units, namely very small quantum numbers. One of the most fascinating phenomena of quantum physics is that of entanglement. Entangled quanta of light behave as if able to influence each other - even as they are spatially separated.

The question of whether or not entanglement is limited to tiny objects or very small quantum numbers came up already in the early days of quantum physics. Now, the Vienna group has taken the first step for testing quantum mechanical entanglement with rotating photons. To illustrate, a quantum mechanical figure skater would have the uncanny ability to pirouette both clockwise and counter-clockwise simultaneously.

Moreover, the direction of her rotations would be correlated with the twirls of another, entangled, skater - even if the two ice dancers whirl far removed from each other, in ice rinks on different continents. The faster the two quantum skaters pirouette, the larger is the quantum number of their rotation direction, the so-called angular momentum.

"In our experiment, we entangled the largest quantum numbers of any kind of particle ever measured," declares Zeilinger with a wry smile.

Could quantum ice dancers exist in reality?
It has been common knowledge for about 20 years now that theoretically, there is no upper limit for the angular momentum of photons. Previous experiments, however, have been limited, due to physical restrictions, to very weak angular momentum and small quantum numbers. In the Vienna experiment, it is theoretically possible to create entanglement regardless of the strength of the angular momentum or the scale of its quantum number.

"Only our limited technical means stop us from creating entanglement with twisted photons that could be sensed even with bare hands," states Robert Fickler, the main author of the current Science publication. And so, the researchers have demonstrated that it is possible in principle to twirl entangled ice skaters simultaneously both in clockwise and counter-clockwise directions.

In practice, a number of major challenges need to be addressed before such an experiment can be realized with macroscopic objects.

From fundamental research to technical applications
In addition to the fundamental issue of the limits of macroscopic entanglement, the physicists address possibilities of potential applications. They are, for example, able to use the created photons for very precise angular measurements already at low intensities of light.

This feature is of advantage in particular when investigating light sensitive materials, as for example some biological substances. "The special features of entanglement provide the fantastic possibility to perform such measurements from arbitrary distances and without any contact whatsoever with the measured object, or even at a point in time that lies in the future!" Fickler explains.

Quantum Entanglement of High Angular Momenta: Robert Fickler, Radek Lapkiewicz, William N. Plick, Mario Krenn, Christoph Schaeff, Sven Ramelow, Anton Zeilinger to be published in Science/ 2nd november issue.

.


Related Links
University of Vienna
Quantum Optics, Quantum Nanophysics and Quantum Information
Vienna Center for Quantum Science and Technology
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Bristol scientists perform new experiment to solve the 'one real mystery' of quantum mechanics
Bristol UK (SPX) Nov 02, 2012
What is light made of: waves or particles? This basic question has fascinated physicists since the early days of science. Quantum mechanics predicts that photons, particles of light, are both particles and waves simultaneously. Reporting in Science, physicists from the University of Bristol give a new demonstration of this wave-particle duality of photons, dubbed the 'one real mystery of quantum ... read more


TIME AND SPACE
Moon crater yields impact clues

Study: Moon basin formed by giant impact

NASA's LADEE Spacecraft Gets Final Science Instrument Installed

Astrium presents results of its study into automatic landing near the Moon's south pole

TIME AND SPACE
Mars Longevity Champ Switching Computers

NASA Rover Finds Clues to Changes in Mars' Atmosphere

Survey Of Matijevic Hill Continues

Preliminary Self-Portrait of Curiosity by Rover's Arm Camera

TIME AND SPACE
Voyager observes magnetic field fluctuations in heliosheath

New NASA Online Science Resource Available for Educators and Students

'First' Pakistan astronaut wants to make peace in space

Space daredevil Baumgartner is 'officially retired'

TIME AND SPACE
Tiangong 1 Parked And Waiting As Shenzhou 10 Mission Prep Continues

China to launch 11 meteorological satellites by 2020

China makes progress in spaceflight research

Patience for Tiangong

TIME AND SPACE
Crew Prepares for Spacewalk After Progress Docks

Crew Preparing for Cargo Ship, Spacewalk

Russian cargo ship docks with ISS: official

Packed Week Ahead for Six-Member Crew

TIME AND SPACE
Russian Proton Briz-M Launches Yamal Satellites Into Orbit

SpaceX Transitions to Third Commercial Crew Phase with NASA

Globalstar Birds To Launch On Soyuz Next February

Ariane 5s are readied in parallel for Arianespace's next heavy-lift flights

TIME AND SPACE
Physicists confirm first planet discovered in a quadruple star system

Planet-hunt data released to public

New Study Brings a Doubted Exoplanet 'Back from the Dead'

New small satellite will study super-Earths for ESA

TIME AND SPACE
ORNL Debuts Titan Supercomputer

UNH Space Scientists to Develop State-of-the-Art Radiation Detector

Samsung muscle versus Apple's 'cool'

1.2 billion smartphones, tablets to sell in 2013: survey




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement