Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. 24/7 Space News .




STELLAR CHEMISTRY
White dwarfs crashing into neutron stars explain loneliest supernovae
by Staff Writers
Coventry, UK (SPX) Aug 13, 2014


University of Warwick researchers explain mystery of the loneliest supernovas. Compact binary star systems that have been thrown far from their host galaxy when one star of that pair became a neutron star, go through a second trauma when the remaining white dwarf star is eventually pulled onto the neutron star. Image courtesy Mark A. Garlick/space-art.co.uk/University of Warwick

A research team led by astronomers and astrophysicists at the University of Warwick have found that some of the Universe's loneliest supernovae are likely created by the collisions of white dwarf stars into neutron stars.

Dr Joseph Lyman from the University of Warwick is the lead researcher on the paper, The progenitors of calcium-rich transients are not formed in situ, published today by the journal Monthly Notices of the Royal Astronomical Society (to appear on astro-ph 8 August 2014).

"Our paper examines so-called `calcium-rich' transients" says Dr Lyman.

"These are luminous explosions that last on the timescales of weeks, however, they're not as bright and don't last as long as traditional supernovae, which makes them difficult to discover and study in detail".

Previous studies had shown that calcium comprised up to half of the material thrown off in such explosions compared to only a tiny fraction in normal supernovae. This means that these curious events may actually be the dominant producers of calcium in our universe.

"One of the weirdest aspects is that they seem to explode in unusual places. For example, if you look at a galaxy, you expect any explosions to roughly be in line with the underlying light you see from that galaxy, since that is where the stars are" comments Dr Lyman.

"However, a large fraction of these are exploding at huge distances from their galaxies, where the number of stellar systems is miniscule.

"What we address in the paper is whether there are any systems underneath where these transients have exploded, for example there could be very faint dwarf galaxies there, explaining the weird locations. We present observations, going just about as faint as you can go, to show there is in fact nothing at the location of these transients - so the question becomes, how did they get there?"

Calcium-rich transients observed to date can be seen tens of thousands of parsecs away from any potential host galaxy, with a third of these events at least 65 thousand light years from a potential host galaxy.

The researchers used the Very Large Telescope in Chile and Hubble Space Telescope observations of the nearest examples of these calcium rich transients to attempt to detect anything left behind or in the surrounding area of the explosion.

The deep observations taken allowed them to rule out the presence of faint dwarf galaxies or globular star clusters at the locations of these nearest examples.

Furthermore, an explanation for core-collapse supernovae, which calcium-rich transients resemble, although fainter, is the collapse of a massive star in a binary system where material is stripped from the massive star undergoing collapse. The researchers found no evidence for a surviving binary companion or other massive stars in the vicinity, allowing them to reject massive stars as the progenitors of calcium rich transients.

Professor Andrew Levan from the University of Warwick's Department of Physics and a researcher on the paper said: "It was increasingly looking like hypervelocity massive stars could not explain the locations of these supernovae. They must be lower mass longer lived stars, but still in some sort of binary systems as there is no known way that a single low mass star can go supernova by itself, or create an event that would look like a supernova."

The researchers then compared their data to what is known about short-duration gamma ray bursts (SGRBs). These are also often seen to explode in remote locations with no coincident galaxy detected. SGRBs are understood to occur when two neutron stars collide, or when a neutron star merges with a black hole - this has been backed up by the detection of a 'kilonova' accompanying a SGRB thanks to work led by Professor Nial Tanvir, a collaborator on this study.

Although neutron star and black hole mergers would not explain these brighter calcium rich transients, the research team considered that if the collision was instead between a white dwarf star and neutron star, it would fit their observations and analysis as it:

+ Would provide enough energy to generate the luminosity of calcium rich transients.

+ The presence of a white dwarf would provide a mechanism to produce calcium rich material.

+ The presence of the Neutron star could explain why this binary star system was found so far from a host galaxy.

Dr Lyman said: "What we therefore propose is these are systems that have been ejected from their galaxy. A good candidate in this scenario is a white dwarf and a neutron star in a binary system. The neutron star is formed when a massive star goes supernova. The mechanism of the supernova explosion causes the neutron star to be `kicked' to very high velocities (100s of km/s). This high velocity system can then escape its galaxy, and if the binary system survives the kick, the white dwarf and neutron star will merge causing the explosive transient."

The researchers note that such merging systems of white dwarfs and neutron stars are postulated to produce high energy gamma-ray bursts, motivating further observations of any new examples of calcium rich transients to confirm this. Additionally, such merging systems will contribute significant sources of gravitational waves, potentially detectable by upcoming experiments that will shed further light on the nature of these exotic systems.

.


Related Links
University of Warwick
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





STELLAR CHEMISTRY
Hubble Finds Supernova Star System Linked To "Zombie Star"
Washington DC (SPX) Aug 13, 2014
Using NASA's Hubble Space Telescope, a team of astronomers has spotted a star system that could have left behind a "zombie star" after an unusually weak supernova explosion. A supernova typically obliterates the exploding white dwarf, or dying star. On this occasion, scientists believe this faint supernova may have left behind a surviving portion of the dwarf star - a sort of zombie star. ... read more


STELLAR CHEMISTRY
China to test recoverable moon orbiter

China to send orbiter to moon and back

August supermoon will be brightest this year

Manned Moon Mission to Cost Russia $2.8 Bln

STELLAR CHEMISTRY
Opportunity Heads to 'Marathon Valley'

NASA Mars Curiosity Rover: Two Years and Counting on Red Planet

Robotic Rock Climbers Could Uncover Clues to Mars' Past

Russia To Construct Landing Pad For ExoMars Mission

STELLAR CHEMISTRY
Study Compiles Data on Problem of Sleep Deprivation in Astronauts

Aerojet Completes CST-100 Work for Commercial Crew Work

Introducing this year's underground astronauts

American Spaceports

STELLAR CHEMISTRY
More Tasks for China's Moon Mission

China's Circumlunar Spacecraft Unmasked

China to launch HD observation satellite this year

Lunar rock collisions behind Yutu damage

STELLAR CHEMISTRY
ATV completes final automated docking

NASA's Space Station Fix-It Demo for Satellites Gets Hardware for 2.0 Update

ESA's cargo vessel ready for space delivery

Robonaut Upgrades, Spacewalk Preps and Cargo Ops for ISS Crew

STELLAR CHEMISTRY
Ariane 5 is readied for Arianespace's September launch with MEASAT-3b and Optus 10

ATK Passes Critical Design Review for NASA's Space Launch System Booster

Russia to Decide on Future of Sea Launch Project by End of 2014

SpaceX launches AsiaSat8 into orbit via Falcon 9 rocket

STELLAR CHEMISTRY
Rotation of Planets Influences Habitability

Planet-like object may have spent its youth as hot as a star

Young binary star system may form planets with weird and wild orbits

Hubble Finds Three Surprisingly Dry Exoplanets

STELLAR CHEMISTRY
Learning from origami to design new materials

BAE Systems touts its Artisan radar system

Association of satellite operators joins program for space safety

USN Moderates CubeSat RF Communications Standards Meeting




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.