Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
When galaxy clusters collide
by Staff Writers
Davis CA (SPX) Jan 11, 2012


Merging cluster DLSCL J0916.2+2951 and its three matter components. Overlaid on the Hubble Space Telescope (HST) color image of the galaxies is the total mass distribution (blue) based on WL analysis of the HST images and the cluster gas distribution (red) based on Chandra X-ray observations. The bulk of the collisional gas is located between the two collisionless galaxy and mass concentrations, indicative of a dissociative merger.

A UC Davis graduate student who is leading a study of the collision of galaxy clusters 5 billion light years away will discuss the team's findings in a press briefing at the annual meeting of the American Astronomical Society in Austin, Texas.

"A galaxy cluster is like a little universe, because it has the same matter composition as the whole universe," said William Dawson, a Ph.D. candidate in physics. "By studying this little universe, we can learn more about our own."

This "little universe" is formally called DLSCL J0916.2+2951 and consists of two clusters of hundreds of galaxies each, in the process of merging into one.

It is nicknamed Perry's Cluster, after team member Perry Gee, a UC Davis research scientist who discovered it. It is similar to another merging cluster - the Bullet Cluster - but relatively further along in its development.

Perry's Cluster comprises about 86 percent dark matter, 12 percent superheated gas and 2 percent actual stars. Those proportions are similar to the distribution of mass in the universe as a whole, Dawson said.

Dark matter is thought to interact very little, if at all, with "regular" matter and does not emit light. But it does exert a gravitational pull on light passing through or near it, distorting the image of distant objects - rather like looking through the bottom of a glass bottle.

Dawson and colleagues mapped the visible galaxies in Perry's Cluster by using the Hubble Space Telescope, the 8-meter Subaru Telescope in Hawaii, the 4-meter Mayall Telescope at the Kitt Peak National Observatory in Arizona and the twin 10-meter telescopes at the W.M. Keck Observatory in Hawaii, and the orbiting Chandra X-ray Observatory for the super-hot gas.

And, with the Hubble, Subaru and Mayall telescopes, the researchers mapped the dark matter by observing distortions in light passing through the cluster from more distant objects - a method called weak gravitational lensing.

The map revealed that the two galaxy clusters within Perry's Cluster had passed through each other - the spaces between the galaxies within the clusters are so vast that actual collisions are unlikely - and that most of the dark matter also had passed through without collision.

Not so with the gas clouds - they had collided and become stuck between the clusters, making a huge cloud of gas a thousand times hotter than the surface of the Sun.

"Because these mergers separate the various matter components of the cluster, they provide astronomers with dissection of the cosmos that would otherwise be impossible," Dawson said.

By comparing and contrasting the behavior of the dark matter to that of the galaxies and gas in the merging cluster, physicists can rule out some theories about dark matter's properties.

The energy of these merging clusters is incomprehensibly large, Dawson said - a million-million times bigger than a supernova. Only a handful have been studied to date.

The cluster is the most advanced of these merging clusters yet seen, Dawson said. Every great advance in our understanding of the physical world is the direct result of understanding how things change with time, so the hope is that by observing clusters at different stages of merging, astronomers can gain insight into the physics involved, he said.

UC Davis colleagues who joined Dawson in his work include Associate Professor David Wittman; project scientist M. James Jee; Professor J. Anthony Tyson; postdoctoral researchers Samuel Schmidt, Paul Thorman and Brian Lemaux; and Assistant Professor Marusa Bradac.

Other team members: John Hughes of Rutgers University; Satoshi Miyazaki and Yousuke Utsumi of The Graduate University for Advanced Studies Tokyo; and Vera Margoniner, California State University, Sacramento.

.


Related Links
University of California - Davis
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Chandra Finds Largest Galaxy Cluster in Early Universe
Huntsville AL (SPX) Jan 11, 2012
An exceptional galaxy cluster, the largest seen in the distant universe, has been found using NASA's Chandra X-ray Observatory and the National Science Foundation-funded Atacama Cosmology Telescope (ACT) in Chile. Officially known as ACT-CL J0102-4915, the galaxy cluster has been nicknamed "El Gordo" ("the big one" or "the fat one" in Spanish) by the researchers who discovered it. The name ... read more


STELLAR CHEMISTRY
'Mini moons' may surround Earth

Rare Moon mineral found in Australia

Ecliptic Shoots for Moon at End of a Record Year

NASA's Twin Grail Spacecraft Reunite in Lunar Orbit

STELLAR CHEMISTRY
Russia was well aware of Phobos-Grunt mission risks

The Challenges of Building A House on Mars

'Greeley Haven' is Winter Workplace for Mars Rover

Mars rover to spend winter at 'Greeley Haven,' named for late ASU geologist Ronald Greeley

STELLAR CHEMISTRY
Solid state Swiss Army Knife can save digital lives

High-tech gadget show opens doors in Vegas

Google sees Android enhancing home appliances

2011 in Polish astronautics

STELLAR CHEMISTRY
China launches Ziyuan III satellite

Spying on Tiangong

China's space ambitions ally glory with pragmatism

Why The X-37B Is Not Spying On Tiangong

STELLAR CHEMISTRY
ISS Team Undertakes 'EPIC' Event

Photographing the International Space Station from Your Own Backyard

New crew arrives at international space station

NASA 'Smart SPHERES' Tested on ISS

STELLAR CHEMISTRY
China to launch Bolivian satellite in 2013: Chinese Ambassador

Ariane 5, Soyuz, Vega: Three world-changing launch vehicles

Satellites: Europe's Arianespace sets 13 launches for 2012

Arianespace Set To Ride The Power of Three In 2012

STELLAR CHEMISTRY
Scientists searching for Earth-type planets should consider two-star system

Wanted: Habitable Moons

Subaru's Sharp Eye Confirms Signs of Unseen Planets in the Dust Ring of HR 4796 A

New Exo planets raise questions about the evolution of stars

STELLAR CHEMISTRY
First Intel-powered smartphone to debut in China

ARISSat-1/KEDR amateur radio satellite deorbits

Nokia declares war in US smartphone market

Salk scientists map the frontiers of vision




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement