Subscribe free to our newsletters via your
. 24/7 Space News .




SHAKE AND BLOW
What has happened to the tsunami debris from Japan?
by Staff Writers
Manoa HI (SPX) Feb 26, 2014


Many oyster buoys from Japan, such as the one here that washed up on Kauai, began to arrive on the windward shores of the Hawaiian Islands in October, 2012. Image courtesy Carl Berg and Surfider Foundation Kauai Volunteers.

The amount of debris in the ocean is growing exponentially, becoming more and more hazardous and harmful to marine life and therefore also to our ocean food source. Measuring and tracking the movements of such debris are still in their infancy. The driftage generated by the tragic 2011 tsunami in Japan gave scientists Nikolai Maximenko and Jan Hafner a unique chance to learn about the effects of the ocean and wind on floating materials as they move across the North Pacific Ocean.

Shortly after the tsunami struck, Maximenko and Hafner used the IPRC Ocean Drift Model to predict where the debris from the tsunami would go. Their computer model is based on trajectories of real satellite-tracked drifting buoys and satellite-measured winds.

The model has now been charting the possible paths of the tsunami driftage for nearly 3 years. The scientists have made a major improvement to the initial model: it now accommodates objects of different shapes and buoyancies that expose different amounts of surface to the wind and travel at different speeds and different trajectories. The model therefore now includes different levels of wind-forcing, simulating the movement of different types of floating debris.

No formal marine debris observing systems exist to verify the model simulations. The model paths for tsunami debris, however, agree with reports of such debris washing up on the shores of Oregon, Washington, Alaska, and the Hawaiian Islands, as well as with observations by sailors crossing the North Pacific.

The first physical evidence of tsunami driftage far from the coasts of Japan, for example, came in September 2011 from the Russian sail training ship Pallada.

The captain had been forewarned that the ship might run into a tsunami debris field on its voyage from Honolulu to Vladivostok. Sailors, alerted and on the lookout, sighted much debris just northwest of Midway, and picked up a little fishing boat later confirmed lost in the tsunami.

The model predicted both the timing and the type of material that has washed up along windward shores of Hawaii: the first tsunami driftage came in August - September 2012, about 1 0.5 years after the tragedy. These were very buoyant pieces, for example, oyster buoys, crates, small fishing boats like the one picked up by Pallada, and parts of small refrigerators.

Then 2 0.5 years after the tsunami, materials sitting lower in the water and less buoyant than the previous driftage arrived: poles and beams with mortise and tenon features. Experts on lumber, who have analyzed cross-cuts of several of these wood pieces, agree that it is Sugi, a species of cypress endemic to Japan. One piece of wood is of very old timber and must have been cut 100 or more years ago.

The IPRC Ocean Drift Model has recently shown to be useful in another dramatic event at sea: validating the El Salvadoran castaway's ordeal. In January 2014, Jose Salvador Alvarenga washed ashore in the Marshall Islands after enduring a 13-month journey from the shores of southern Mexico.

The paths of floating objects in the IPRC Ocean Drift model, driven with the currents and wind conditions, lend strong support to this rather improbable odyssey.

The details can be read here; Hafner, J.; Maximenko, N.; Story Of Marine Debris From The 2011 Tsunami In Japan In Model Simulations And Observational Reports

.


Related Links
University of Hawaii - SOEST
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SHAKE AND BLOW
Researchers say magnetic fields in oceans can help detect tsunamis
Tokyo (UPI) Jan 9, 2013
Japanese researchers said they found a new way to define tsunamis: Observe magnetic fields generated by tsunami-induced movements of seawater. The researchers said such observations make it easier to determine the direction, size and arrival time of a tsunami, Jiji Press reported Thursday. The team said it successfully detected magnetic fields generated as tsunami spread after a ... read more


SHAKE AND BLOW
Is Yutu Stuck?

Japan's Pocari Sweat bound for the moon: maker

Lunar ownership laws: a future necessity?

Chang'e-2 lunar probe travels 70 mln km

SHAKE AND BLOW
NASA Mars Orbiter Views Opportunity Rover on Ridge

Curiosity Adds Reverse Driving for Wheel Protection

Curiosity Drives On After Crossing Martian Dune

The World Above and Beyond

SHAKE AND BLOW
Orion Underway Recovery Testing Begins off the Coast of California

Inside astronaut Alexander's head

NASA Welcomes University Participants to Develop Science Payloads

Boeing Commercial Crew Program Passes NASA Hardware, Software Reviews

SHAKE AND BLOW
No Call for Yutu

What's up, Yutu

China's Jade Rabbit rover comes 'back to life'

Yutu Awakes

SHAKE AND BLOW
NASA, International Space Station Partners Announce Future Crew Members

Andrews Space Cargo Module Power Unit Provides Power For Payloads Bound For ISS

Russian Progress M-22M docks with ISS following fast rendezvous

Russian Resupply Spacecraft Begins Expedited Flight to Station

SHAKE AND BLOW
Arianespace to launch OPTSAT 3000 and VENuS satellites

Lighter engines a headache for satellite launcher Ariane

New Russian Rocket Mock-Up Rolls Out to Launch Pad

ILS Proton Successfully Launches TURKSAT-4A for Turksat

SHAKE AND BLOW
ESA selects planet-hunting PLATO mission

Rife with hype, exoplanet study needs patience and refinement

Scientist: Exoplanet research needs less hype, more patience

Europe sets plans for 2024 planet-hunting mission

SHAKE AND BLOW
Study finds 2 biodegradable mulches to be suitable polyethylene alternatives

Novel optical fibers transmit high-quality images

Lagos gets on its bike with recycling 'loyalty' scheme

How to catch a satellite




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.