Subscribe free to our newsletters via your
. 24/7 Space News .




WEATHER REPORT
Weather History Time Machine
by Staff Writers
San Diego CA (SPX) Oct 17, 2014


Shen and colleagues created a video showcasing their historical precipitation data. At 00:31 (July 1933 - June 1934), you can see the extreme dryness in the Pacific Ocean preceding the Dust Bowl.

During the 1930s, North America endured the Dust Bowl, a prolonged era of dryness that withered crops and dramatically altered where the population settled. Land-based precipitation records from the years leading up to the Dust Bowl are consistent with the telltale drying-out period associated with a persistent dry weather pattern, but they can't explain why the drought was so pronounced and long-lasting.

The mystery lies in the fact that land-based precipitation tells only part of the climate story. Building accurate computer reconstructions of historical global precipitation is tricky business. The statistical models are very complicated, the historical data is often full of holes, and researchers invariably have to make educated guesses at correcting for sampling errors.

Hard science
The high degree of difficulty and expertise required means that relatively few climate scientists have been able to base their research on accurate models of historical precipitation. Now, a new software program developed by a research team including San Diego State University Distinguished Professor of Mathematics and Statistics Samuel Shen will democratize this ability, allowing far more researchers access to these models.

"In the past, only a couple dozen scientists could do these reconstructions," Shen said. "Now, anybody can play with this user-friendly software, use it to inform their research, and develop new models and hypotheses. This new tool brings historical precipitation reconstruction from a 'rocket science' to a 'toy science.'"

The National Science Foundation-funded project is a collaboration between Shen, University of Maryland atmospheric scientist Phillip A. Arkin and National Oceanic and Atmospheric Administration climatologist Thomas M. Smith.

Predicting past patterns
Prescribed oceanic patterns are useful for predicting large weather anomalies. Prolonged dry or wet spells over certain regions can reliably tell you whether, for instance, North America will undergo an oceanic weather pattern such as the El Nino or La Nina patterns.

The problem for historical models is that reliable data exists from only a small percentage of the earth's surface. About eighty-four percent of all rain falls in the middle of the ocean with no one to record it. Satellite weather tracking is only a few decades old, so for historical models, researchers must fill in the gaps based on the data that does exist.

Shen, who co-directs SDSU's Center for Climate and Sustainability Studies Area of Excellence, is an expert in minimizing error size inside model simulations. In the case of climate science, that means making the historical fill-in-the-gap guesses as accurate as possible.

Shen and his SDSU graduate students Nancy Tafolla and Barbara Sperberg produced a user-friendly, technologically advanced piece of software that does the statistical heavy lifting for researchers. The program, known as SOGP 1.0, is based on research published last month in the Journal of Atmospheric Sciences. The group released SOGP 1.0 to the public last week, available by request.

SOGP 1.0, which stands for a statistical technique known as spectral optimal gridding of precipitation, is based on the MATLAB programming language, commonly used in science and engineering. It reconstructs precipitation records for the entire globe (excluding the Polar Regions) between the years 1900 and 2011 and allows researchers to zoom in on particular regions and timeframes.

New tool for climate change models
For example, Shen referenced a region in the middle of the Pacific Ocean that sometimes glows bright red on the computer model, indicating extreme dryness, and sometimes dark blue, indicating an unusually wet year. When either of these climate events occur, he said, it's almost certain that North American weather will respond to these patterns, sometimes in a way that lasts several years.

"The tropical Pacific is the engine of climate," Shen explained.

In the Dust Bowl example, the SOGP program shows extreme dryness in the tropical Pacific in the late 1920s and early 1930s - a harbinger of a prolonged dry weather event in North America. Combining this data with land-record data, the model can retroactively demonstrate the Dust Bowl's especially brutal dry spell.

"If you include the ocean's precipitation signal, the drought signal is amplified," Shen said. "We can understand the 1930s Dust Bowl better by knowing the oceanic conditions."

The program isn't a tool meant to look exclusively at the past, though. Shen hopes that its ease of use will encourage climate scientists to incorporate this historical data into their own models, improving our future predictions of climate change.

Researchers interested in using SOGP 1.0 can request the software package as well as the digital datasets used by the program by e-mailing sogp.precip@gmail.com with the subject line, "SOGP precipitation product request," followed by your name, affiliation, position, and the purpose for which you intend to use the program.

.


Related Links
San Diego State University
Weather News at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





WEATHER REPORT
New satellite-borne weather warning system delivered
Palo Alto, Calif. (UPI) Oct 16, 2014
A satellite-borne system for earlier warnings of severe storm development, including tornadoes, has been delivered to the U.S. government. The system is called the Geostationary Lightning Mapper instrument. It was produced by Lockheed Martin and will fly on the National Oceanic and Atmospheric Administration's next-generation Geostationary Operational Environmental Satellite missions, ... read more


WEATHER REPORT
China's ailing moon rover weakening

NASA Mission Finds Widespread Evidence of Young Lunar Volcanism

Russian Luna-25 Mission to Cost Billions

New Batch of Lunar Soil to be Delivered to Earth in 2023-2025

WEATHER REPORT
Mars One -- and done?

MAVEN spacecraft's first look at Mars holds surprises

NASA's Opportunity Rover Gets Panorama Image at 'Wdowiak Ridge'

Comet's Close Encounter 'One in a Million'

WEATHER REPORT
"Houston: We Have A Problem...But No Worries, Our Virtual Therapist Is On It"

Space Trips To Change World For Better: Virgin Galactic CEO

NASA Exercises Authority to Proceed with Commercial Crew Contracts

Li pledges China will boost innovation, creativity

WEATHER REPORT
China to launch new marine surveillance satellites in 2019

China Successfully Orbits Experimental Satellite

China's first space lab in operation for over 1000 days

China Exclusive: Mars: China's next goal?

WEATHER REPORT
ISS Astronauts Wrap Up Preps for Wednesday Spacewalk

Progress-M Cargo Ship To Undock From ISS On Oct 27

A Different Kind of Green Movement: Seedling Growth in Space

ISS Spacewalkers Replace Power Regulator, Move Equipment

WEATHER REPORT
Argentina launches geostationary satellite

Arianespace's December mission for DIRECTV-14 and GSAT-16 satellites in process

Inquiry reveals design stage shortcoming in Galileo navigation system

Soyuz Flight VS09 Report

WEATHER REPORT
Getting To Know Super-Earths

Astronomers Spot Faraway Uranus-Like Planet

NASA's Hubble Maps the Temperature and Water Vapor on an Extreme Exoplanet

Hubble project maps temperature, water vapor on wild exoplanet

WEATHER REPORT
Engineers find a way to win in laser performance by losing

Unstoppable magnetoresistance

Sticky business: bonding ultrastable space missions

Tailored flexible illusion coatings hide objects from detection




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.