Subscribe free to our newsletters via your
. 24/7 Space News .




ICE WORLD
Warming may release vast amounts of carbon from Arctic soils
by Staff Writers
Savannah GA (SPX) Apr 27, 2015


A bank of permafrost thaws near the Kolyma River in Siberia. Image courtesy Skidaway Institute of Oceanography. For a larger version of this image please go here.

While climatologists are carefully watching carbon dioxide levels in the atmosphere, another group of scientists is exploring a massive storehouse of carbon that has the potential to significantly affect the climate change picture.

University of Georgia Skidaway Institute of Oceanography researcher Aron Stubbins is part of a team investigating how ancient carbon, locked away in Arctic permafrost for thousands of years, is now being transformed into carbon dioxide and released into the atmosphere. The results of the study were published in Geophysical Research Letters.

The Arctic contains a massive amount of carbon in the form of frozen soil--the remnants of plants and animals that died more than 20,000 years ago. Because this organic material was permanently frozen year-round, it did not undergo decomposition by bacteria the way organic material does in a warmer climate. Just like food in a home freezer, it has been locked away from the bacteria that would otherwise cause it to decay and be converted to carbon dioxide.

"However, if you allow your food to defrost, eventually bacteria will eat away at it, causing it to decompose and release carbon dioxide," Stubbins said. "The same thing happens to permafrost when it thaws."

Scientists estimate there is more than 10 times the amount of carbon in the Arctic soil than has been put into the atmosphere by burning fossil fuels since the start of the Industrial Revolution. To look at it another way, scientists estimate there is two and a half times more carbon locked away in the Arctic deep freezer than there is in the atmosphere today. Now, with a warming climate, that deep freezer is beginning to thaw and that long-frozen carbon is beginning to be released into the environment.

"The study we did was to look at what happens to that organic carbon when it is released," Stubbins said. "Does it get converted to carbon dioxide or is it still going to be preserved in some other form?"

Stubbins and his colleagues conducted their fieldwork at Duvanni Yar in Siberia. There, the Kolyma River carves into a bank of permafrost, exposing the frozen organic material. This worked well for the scientists, as they were able to find streams that consisted of 100 percent thawed permafrost.

The researchers measured the carbon concentration, how old the carbon was and what forms of carbon were present in the water. They bottled it with a sample of the local microbes. After two weeks, they measured the changes in the carbon concentration and composition and the amount of carbon dioxide that had been produced.

"We found that decomposition converted 60 percent of the carbon in the thawed permafrost to carbon dioxide in two weeks," Stubbins said. "This shows the permafrost carbon is definitely in a form that can be used by the microbes."

Lead author Robert Spencer of Florida State University added, "Interestingly, we also found that the unique composition of thawed permafrost carbon is what makes the material so attractive to microbes."

The study also confirmed what the scientists had suspected: The carbon being used by the bacteria is at least 20,000 years old. This is significant because it means that carbon has not been a part of the global carbon cycle in the recent past.

"If you cut down a tree and burn it, you are simply returning the carbon in that tree to the atmosphere where the tree originally got it," Stubbins said. "However, this is carbon that has been locked away in a deep-freeze storage for a long time.

"This is carbon that has been out of the active, natural system for tens of thousands of years. To reintroduce it into the contemporary system will have an effect."

The carbon release has the potential to create what scientists call a positive feedback loop. This means as more carbon is released into the atmosphere, it would amplify climate warming. That, in turn, would cause more permafrost to thaw and release more carbon, causing the cycle to continue.

"Currently, this is not a process that shows up in future (Intergovernmental Panel on Climate Change) climate projections; in fact, permafrost is not even accounted for," Spencer said.

"Moving forward, we need to find out how consistent our findings are and to work with a broader range of scientists to better predict how fast this process will happen," Stubbins said.

In addition to Stubbins and Spencer, the research team included Paul Mann from Northumbria University, United Kingdom; Thorsten Dittmar from the University of Oldenburg, Germany; Timothy Eglinton and Cameron McIntyre from the Geological Institute, Zurich, Switzerland; Max Holmes from Woods Hole Research Center; and Nikita Zimov from the Far-Eastern Branch of the Russian Academy of Science.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Skidaway Institute of Oceanography
Beyond the Ice Age






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ICE WORLD
Arctic beetles may be ideal marker of climate change
Montreal, Canada (SPX) Apr 24, 2015
Wanna know about climate change? Ask a beetle. Scientists have been logging changes in weather patterns and temperatures in the Arctic for some time. Now they need to find ways to measure how these changes in climate are affecting biodiversity. One of the best places to look may be down at our feet, at beetles. That`s because, as a McGill research team discovered after doing the first larg ... read more


ICE WORLD
Japan to land first unmanned spacecraft on moon in 2018

Dating the moon-forming impact event with meteorites

Japan to land probe on the moon in 2018

Japan planning moon mission: space agency

ICE WORLD
UAE opens space center to oversee mission to Mars

Robotic Arm Gets Busy on Rock Outcrop

Mars might have liquid water

NASA's Curiosity Rover Making Tracks and Observations

ICE WORLD
Space law is no longer beyond this world

Ramping Up For Johnson's Chamber A Test

Space icon reflects on origins of space program

Russia vows to put Russian cosmonauts on Moon no later than 2030

ICE WORLD
Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

China's Space Laboratory Still Cloaked

ICE WORLD
Liquid crystal bubbles experiment arrives at International Space Station

Sixth SpaceX Delivery of Station Research With a Side of Caffeine

Research for One-Year Space Station Mission Launched On Falcon 9

Astronaut Hadfield to release first space album

ICE WORLD
Ariane 5 reaches the launch zone for next heavy-lift mission

Sentinel-2A arrives for Ariane Vega mission

Arianespace Flight VA222: THOR 7 and SICRAL 2 - launch delayed

SpaceX Dragon cargo ship arrives at space station

ICE WORLD
First exoplanet visible light spectrum

White Dwarf May Have Shredded Passing Planet

Spitzer, OGLE spot planet deep within our galaxy

Spitzer Spots Planet Deep Within Our Galaxy

ICE WORLD
Perseverance paves way for wind laser

Electron spin brings order to high entropy alloys

MIPT researchers grow cardiac tissue on 'spider silk' substrate

Autonomous convergence and divergence of self-powered soft liquid metals




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.