Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. 24/7 Space News .




TIME AND SPACE
Using the sun to illuminate a basic mystery of matter
by Staff Writers
Newark NJ (SPX) Jul 15, 2013


File image.

Antimatter has been detected in solar flares via microwave and magnetic-field data, according to a presentation by NJIT Research Professor of Physics Gregory D. Fleishman and two co-researchers at the 44th meeting of the American Astronomical Society's Solar Physics Division.

This research sheds light on the puzzling strong asymmetry between matter and antimatter by gathering data on a very large scale using the Sun as a laboratory.

While antiparticles can be created and then detected with costly and complex particle-accelerator experiments, such particles are otherwise very difficult to study. However, Fleishman and the two co-researchers have reported the first remote detection of relativistic antiparticles - positrons - produced in nuclear interactions of accelerated ions in solar flares through the analysis of readily available microwave and magnetic-field data obtained from solar-dedicated facilities and spacecraft.

That such particles are created in solar flares is not a surprise, but this is the first time their immediate effects have been detected.

The results of this research have far-reaching implications for gaining valuable knowledge through remote detection of relativistic antiparticles at the Sun and, potentially, other astrophysical objects by means of radio-telescope observations.

The ability to detect these antiparticles in an astrophysical source promises to enhance our understanding of the basic structure of matter and high-energy processes such as solar flares, which regularly have a widespread and disruptive terrestrial impact, but also offer a natural laboratory to address the most fundamental mysteries of the universe we live in.

Electrons and their antiparticles, positrons, have the same physical behavior except that electrons have a negative charge while positrons, as their name implies, have a positive charge.

This charge difference causes positrons to emit the opposite sense of circularly polarized radio emission, which Fleishman and his colleagues used to distinguish them.

To do that required knowledge of the magnetic field direction in the solar flare, provided by NASA's Solar and Heliospheric Observatory (SOHO), and radio images at two frequencies from Japan's Nobeyama Radioheliograph.

Fleishman and his colleagues found that the radio emission from the flare was polarized in the normal sense (due to more numerous electrons) at the lower frequency (lower energy) where the effect of positrons is expected to be small, but reversed to the opposite sense at the same location, although at the higher frequency (higher energy) where positrons can dominate.

.


Related Links
New Jersey Institute of Technology
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
Stacking up a clearer picture of the Universe
Perth, Australia (SPX) Jun 13, 2013
Researchers from the International Centre for Radio Astronomy Research (ICRAR) have proven a new technique that will provide a clearer picture of the Universe's history and be used with the next generation of radio telescopes such as the Square Kilometre Array (SKA). In research published in the Monthly Notices of the Royal Astronomical Society, ICRAR PhD Candidate Jacinta Delhaize has stu ... read more


TIME AND SPACE
Scientist says Earth may once have been orbited by two moons

Dust hazard for Moon missions: scientists

NASA Seeks Information on Commercial Robotic Lunar Lander Capabilities

Orbiting astronaut controls robot on Earth, testing feasibility of CU-Boulder project on far side of the moon

TIME AND SPACE
DNA-sequencing chip could be sent to Mars to search for signs of life

Opportunity Making Progress Toward Solander Point

Mars Rover Curiosity Begins Trek Toward Mount Sharp

Science Team Outlines Goals for NASA's 2020 Mars Rover

TIME AND SPACE
NASA Selects Seven Projects for 2014 X-Hab Innovation Challenge

Space seeds could "benefit" traditional Chinese medicines

Kennedy Facilities Key to NASA's Transition

Voyager 1 Explores Final Frontier Of Our Solar Bubble

TIME AND SPACE
China's space tracking ship Yuanwang-5 berths at Jakarta for replenishment

China plans to launch Tiangong-2 space lab around 2015

Twilight for Tiangong

China calls for international cooperation in manned space program

TIME AND SPACE
Station Astronauts Complete First of Two July Spacewalks

Russia to go ahead with space freighter launch

ISS technology to 'hear' potential leaks

Russian cosmonauts conduct space station tasks in spacewalk

TIME AND SPACE
Special group to be set up for inspecting production of Proton-M carrier rockets

Two Rockets Launched From Wallops

Specialists unrelated to Khrunichev to check Proton-M rocket production

Proton Rocket to Stay in Demand Despite Accidents

TIME AND SPACE
Hubble Finds a Cobalt Blue Planet

Gaps in dust around stars may not indicate planets as many believe

Hubble Telescope reveals variation between hot extrasolar planet atmospheres

UCSB Astronomer Uncovers The Hidden Identity Of An Exoplanet

TIME AND SPACE
Cool it, quick: Rapid cooling leads to stronger alloys

Bioengineers Use Adhesion to Combine Silicones and Organic Materials

NASA's OPALS to Beam Data From Space Via Laser

Experts row over 'earliest' Chinese inscriptions find




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement