Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. 24/7 Space News .




SHAKE AND BLOW
Undersea volcano gave off signals before eruption in 2011
by Staff Writers
Newport OR (SPX) Jun 14, 2012


File image.

A team of scientists that last year created waves by correctly forecasting the 2011 eruption of Axial Seamount years in advance now says that the undersea volcano located some 250 miles off the Oregon coast gave off clear signals hours before its impending eruption.

The researchers' documentation of inflation of the undersea volcano from gradual magma intrusion over a period of years led to the long-term eruption forecast. But new analyses using data from underwater hydrophones also show an abrupt spike in seismic energy about 2.6 hours before the eruption started, which the scientists say could lead to short-term forecasting of undersea volcanoes in the future.

They also say that Axial could erupt again - as soon as 2018 - based on the cyclic pattern of ground deformation measurements from bottom pressure recorders.

Results of the research, which was funded by the National Science Foundation, the National Oceanic and Atmospheric Administration, and the Monterey Bay Aquarium Research Institute (MBARI), are being published this week in three separate articles in the journal Nature Geoscience.

Bill Chadwick, an Oregon State University geologist and lead author on one of the papers, said the link between seismicity, seafloor deformation and the intrusion of magma has never been demonstrated at a submarine volcano, and the multiple methods of observation provide fascinating new insights.

"Axial Seamount is unique in that it is one of the few places in the world where a long-term monitoring record exists at an undersea volcano - and we can now make sense of its patterns," said Chadwick, who works out of Oregon State's Hatfield Marine Science Center in Newport, Ore. "We've been studying the site for years and the uplift of the seafloor has been gradual and steady beginning in about 2000, two years after it last erupted.

"But the rate of inflation from magma went from gradual to rapid about 4-5 months before the eruption," added Chadwick. "It expanded at roughly triple the rate, giving a clue that the next eruption was coming."

Bob Dziak, an Oregon State University marine geologist, had previously deployed hydrophones on Axial that monitor sound waves for seismic activity. During a four-year period prior to the 2011 eruption, there was a gradual buildup in the number of small earthquakes (roughly magnitude 2.0), but little increase in the overall "seismic energy" resulting from those earthquakes.

That began to change a few hours before the April 6, 2011, eruption, said Dziak, who also is lead author on one of the Nature Geoscience articles.

"The hydrophones picked up the signal of literally thousands of small earthquakes within a few minutes, which we traced to magma rising from within the volcano and breaking through the crust," Dziak said. "As the magma ascends, it forces its way through cracks and creates a burst of earthquake activity that intensifies as it gets closer to the surface.

"Using seismic analysis, we were able to clearly see how the magma ascends within the volcano about two hours before the eruption," Dziak said. "Whether the seismic energy signal preceding the eruption is unique to Axial or may be replicated at other volcanoes isn't yet clear - but it gives scientists an excellent base from which to begin."

The researchers also used a one-of-a-kind robotic submersible to bounce sound waves off the seafloor from an altitude of 50 meters, mapping the topography of Axial Seamount both before and after the 2011 eruption at a one-meter horizontal resolution. These before-and-after surveys allowed geologists to clearly distinguish the 2011 lava flows from the many previous flows in the area.

MBARI researchers used three kinds of sonar to map the seafloor around Axial, and the detailed images show lava flows as thin as eight inches, and as thick as 450 feet.

"These autonomous underwater vehicle-generated maps allowed us, for the first time, to comprehensively map the thickness and extent of lava flows from a deep-ocean submarine in high resolution," said David Caress, an MBARI engineer and lead author on one of the Nature Geoscience articles. "These new observations allow us to unambiguously differentiate between old and new lava flows, locate fissures from which these flows emerged, and identify fine-scale features formed as the lava flowed and cooled."

The researchers also used shipboard sonar data to map a second, thicker lava flow about 30 kilometers south of the main flow - also a likely result of the 2011 eruption.

Knowing the events leading up to the eruption - and the extent of the lava flows - is important because over the next few years researchers will be installing many new instruments and underwater cables around Axial Seamount as part of the Ocean Observatories Initiative. These new instruments will greatly increase scientists' ability to monitor the ocean and seafloor off of the Pacific Northwest.

"Now that we know some of the long-term and short-term signals that precede eruptions at Axial, we can monitor the seamount for accelerated seismicity and inflation," said OSU's Dziak. "The entire suite of instruments will be deployed as part of the Ocean Observatories Initiative in the next few years - including new sensors, samplers and cameras - and next time they will be able to catch the volcano in the act."

The scientists also observed and documented newly formed hydrothermal vents with associated biological activity, Chadwick said.

"We saw snowblower vents that were spewing out nutrients so fast that the microbes were going crazy," he pointed out. "Combining these biological observations with our knowledge of the ground deformation, seismicity and lava distribution from the 2011 eruption will further help us connect underwater volcanic activity with the life it supports."

Scientists from Columbia University, the University of Washington, North Carolina State University, and the University of California at Santa Cruz also participated in the project and were co-authors on the Nature Geoscience articles.

.


Related Links
Oregon State University
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





SHAKE AND BLOW
Super-eruptions may have surprisingly short fuses
Nashville TN (SPX) Jun 08, 2012
Enormous volcanic eruptions with potential to end civilizations may have surprisingly short fuses, researchers have discovered. These eruptions are known as super-eruptions because they are more than 100 times the size of ordinary volcanic eruptions like Mount St. Helens. They spew out tremendous flows of super-heated gas, ash and rock capable of blanketing entire continents and inject eno ... read more


SHAKE AND BLOW
Nanoparticles found in moon glass bubbles explain weird lunar soil behaviour

UA Lunar-Mining Team Wins National Contest

NASA Lunar Spacecraft Complete Prime Mission Ahead of Schedule

NASA Offers Guidelines To Protect Historic Sites On The Moon

SHAKE AND BLOW
Impact atlas catalogs over 635,000 Martian craters

e2v imaging sensors launched into space on NASA mission to Mars

NASA Mars Rover Team Aims for Landing Closer to Prime Science Site

NASA's Mars rover zeroes in on August landing

SHAKE AND BLOW
The pressure is on for aquanauts

Virgin Galactic Opens New Office

US scientists host 'bake sale for NASA'

XCOR Appoints Space Expedition Corp As General Sales Agent For Space Tourism Flights

SHAKE AND BLOW
China's manned spacecraft in final preparations for mid-June launch

Tiangong's Big Tasks

Media Tonedown for Tiangong

Shenzhou-9 full-system drill a success

SHAKE AND BLOW
Varied Views from the ISS

Strange Geometry - Yes, It's All About the Math

Capillarity in Space - Then and Now, 1962-2012

Dragon on board

SHAKE AND BLOW
NASA's NuSTAR Mission Lifts Off

Orbital Launches Company-Built NuSTAR Satellite Aboard Pegasus Rocket for NASA

NuSTAR Arrives at Island Launch Site

Another Ariane 5 begins its initial build-up at the Spaceport

SHAKE AND BLOW
Extremely little telescope discovers pair of odd planets

Alien Earths Could Form Earlier than Expected

Planets can form around different types of stars

Small Planets Don't Need 'Heavy Metal' Stars to Form

SHAKE AND BLOW
Japanese restrict atomic exposure testing

Microsoft reaches into TV market with Xbox Live ads

iPad to drive stronger tablet sales worldwide: study

New national supercomputer to perform astronomical feats




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement