Subscribe free to our newsletters via your
. 24/7 Space News .




SPACEMART
Under Pressure? Turn To Space Tech
by Staff Writers
Paris, France (ESA) Mar 22, 2011


Today, approximately 90% of worldwide non-bulk cargo moves by some 18 millions containers, mainly constructed in steel. A Belgium company has developed a new type of containers in composite material which reduces their tare weight and increases their load capacity by 10%. Special simulation software developed by ESA to design composite elements for space structures was used to determine the best design of the containers. Here the container harbor in the South Korean Port of Busan. Credits: Martin Pueschel Eastberliner

When engineers come up with a super-strong new material for building shipping containers, trucking trailers and aircraft parts, it is a major challenge to simulate its strength and reliability accurately. So a Belgian company turned to ESA.

A super-strong new material presents engineers with tricky challenges. The good news? They have a super-strong new building material. The bad news? If it is brand new and high-tech, there is no design or production experience, and it can be difficult to calculate the final strength through computer modeling. This was the situation Belgian composite materials company Acrosoma found itself in a few years ago.

ESA's Technology Transfer Programme stepped in to suggest sophisticated software from space research and development that could reduce the weight of the containers so that each lorry could carry 10% more cargo.

This reduces the number of vehicles on the road, lowering both costs and carbon dioxide emission - which is good for the environment.

The problem was that it was not possible to test the panels physically because of their size, so computer simulations were needed.

"If you used a standard programme," said Jan Verhaeghe, Acrosoma's CEO, of the quandary his company faced at the time, "it showed that our panels were weak."

The company was sure that the panels were strong enough, but "we needed to see how strong the panels actually would be," said Mr Verhaeghe.

"And we needed to convince the customers, as well."

Space simulation software proved the strength
"We use the ESAComp software in preliminary design phases for space structures to analyse the composite materials' performance and strength," explained Andreas Obst, an engineer in ESA's Structures and Mechanisms Division.

"We use it to determine the best material and the lightest structure, but it is still strong enough. It helps us save weight, which is very important for anything to go into space."

The link between Acrocoma's problem and the space software ESAComp was established by Creation, a company, working with ESA's Technology Transfer Programme Office as part of its National Technology Transfer Initiative in Belgium. Creation facilitates the spin-off of technology developed for space into terrestrial applications.

ESAComp was developed by ESA for the express purpose of designing and analysing composite materials used in, say, spacecraft and satellite launchers. The first issue was developed by Helsinki University of Technology and released in 1998. Although it originated in aerospace, ESAComp was developed as a general tool for dealing with composites in industry and research.

In 2000 the Finnish company Componeering was set up to take ESAComp to the non-space market to solve problems like Acrosoma's.

Mr Verhaeghe recalled, "ESA came to us and said, 'Can you do something with that programme?'"

"In the beginning, we didn't believe it would work. But we thought, if ESA believes in it, who are we not to?"

Composite stronger than steel
While a panel made of a traditional material, like steel, will be consistently strong throughout, composite materials allow engineers to embed the fibres in different configurations.

This in turn makes it possible to exert a high degree of control over how strong the panel is under very specific conditions. A load-bearing lorry panel, for example, will be subject to very different kinds of pressures, loads and weight than a panel in the wall of a satellite launcher.

Thanks to fibre-enhanced plastic technology, each can be built specifically for the type of stress they will encounter.

By producing strength only where it is needed, you can cut down on material. "Eventually, one can create much lighter structures," explained Markku Palantera, general manager of Componeering.

Testing began, and it worked: Componeering's ESAComp software could handle the new materials.

The ability to test the panels accurately streamlined Acrosoma's design phase. But most important was the newfound ability to show potential customers just what they were getting.

"ESAComp simulation software is used by European space industry. The software has been used to solve problems for different industries in non-space fields, when it comes to the use of composite materials," added Andreas Obst.

In the future, Acrosoma hopes to adapt their materials to make parts for everything from aircraft fuselages to wind turbines. For moving into new fields like these, Componeering's software simulations are indispensable.

"It's a very powerful commercial tool," said Mr Verhaeghe. "But more and more, it's a basis for Acrosoma's technological development."

ESA's Technology Transfer Programme Office (TTPO)
The TTPO's main mission is to facilitate the use of space technology and space systems for non-space applications and to demonstrate the benefit of the European space programme to European citizens.

The office is responsible for defining the overall approach and strategy for the transfer of space technologies, including the incubation of start-up companies and their funding.

.


Related Links
ESA's Technology Transfer Programme Office
The latest information about the Commercial Satellite Industry






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SPACEMART
Northrop Grumman Launches Integrated Assembly Line
Palmdale, CA (SPX) Mar 18, 2011
Northrop Grumman took a significant step in transitioning the F-35 Joint Strike Fighter to full-rate production with the March 1 start-up of the company's integrated assembly line (IAL) in Palmdale. In a ceremony for employees, company officials cut the ribbon on the new IAL and began utilizing the line later in the day. Inspired by automation systems used by automakers, the IAL was design ... read more


SPACEMART
84 Teams To Compete In NASA Great Moonbuggy Race

A New View Of Moon

Super Full Moon

LRO Delivers Treasure Trove Of Data

SPACEMART
Next Mars Rover Gets A Test Taste Of Mars Conditions

Alternatives Have Begun In Bid To Hear From Spirit

Opportunity Completes Study Of Ruiz Garcia Rock

Time Is Now For Human Mission To Mars

SPACEMART
LockMart Makes Strides In Human Space Exploration

Planetary Exploration Suit Will Be Tested In Antarctica

From Outer Sol To The Inner Rock Human Space Is Growing

Health experts sound warning over iodine rush

SPACEMART
What Future for Chang'e-2

China setting up new rocket production base

China's Tiangong-1 To Be Launched By Modified Long March II-F Rocket

China Expects To Launch Fifth Lunar Probe Chang'e-5 In 2017

SPACEMART
Roscosmos Sets April 5 For Soyuz TMA-21 Launch

Astronaut Cady Coleman Shares Her Love of the Flute from Space

Launch Of New ISS mission Slated For April 5

Europe agrees to space station extension

SPACEMART
SES And ILS Announce Launch Of SES-6 On ILS Proton In 2013

LockMary To Launch DigitalGlobe WorldView-3 Earth Imaging Satellite

ORBCOMM And SpaceX Set Plans To Launch Satellites On Next Falcon 9

Arianespace's Success Is Built On Transparency

SPACEMART
Report Identifies Priorities For Planetary Science 2013-2022

Planetary Society Statement On Planetary Science Decadal Survey For 2013-2022

Meteorite Tells Of How Planets Are Born In A Swirl Of Dust

Planet Formation In Action

SPACEMART
Facebook buys startup to link with more mobile phones

Contamination at Fukushima plant to last 'decades': experts

Radioactive substances in seawater near Japan plant

Tech-savvy Indians cry out for Apple's attention




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement