Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Uncovering the forbidden side of molecules
by Staff Writers
Basel, Switzerland (SPX) Sep 23, 2014


This is a simulation of spatial distribution of individual nitrogen ions (green) in the interior of a Coulomb crystal of laser-cooled calcium ions (blue). Image courtesy University of Basel, Department of Chemistry.

Researchers at the University of Basel in Switzerland have succeeded in observing the "forbidden" infrared spectrum of a charged molecule for the first time.

These extremely weak spectra offer perspectives for extremely precise measurements of molecular properties and may also contribute to the development of molecular clocks and quantum technology.

The results were published in the scientific journal Nature Physics.

Spectroscopy, the study of the interaction between matter and light, is probably the most important method for investigating the properties of molecules. Molecules can only absorb light at well-defined wavelengths which correspond to the difference between two quantum-mechanical energy states.

This is referred to as a spectroscopic transition. An analysis of the wavelengths and the intensity of the transitions provides information about the chemical structure and molecular motions, such as vibration or rotation.

In certain cases, however, the transition between two energy levels is not permitted. The transition is then called "forbidden". Nevertheless, this restriction is not categorical, meaning that forbidden transitions can still be observed with an extremely sensitive method of measurement.

Although the corresponding spectra are extremely weak, they can be measured to an exceptionally accurate degree. They provide information on molecular properties with a level of precision not possible within allowed spectra.

Precise measurements of molecular properties
Within the framework of the National Centre of Competence in Research QSIT - Quantum Science and Technology, the research group headed by Professor Stefan Willitsch at the University of Basel's Department of Chemistry has established methods for the precise manipulation and control of molecules on the quantum level.

In the present study, individual charged nitrogen molecules (ions) were generated in a well-defined molecular energy state. The ions were then implanted into a structure of ultra-cold, laser-cooled calcium ions - a Coulomb crystal - in an ultra-high vacuum chamber.

The molecular ions were thus cooled to a few thousandths of a degree above absolute zero to localize in space. In this isolated, cold environment, the molecules could be investigated without perturbations over long periods of time. This enabled the researchers to excite and observe forbidden transitions in the infrared spectral domain using an intensive laser.

Potential for new applications
The new method paves the way for new applications, such as the highly precise measurement of molecular properties, the development of extremely precise clocks based on individual molecules and quantum information processing using molecules.

It also offers perspectives to test fundamental concepts using spectroscopic precision measurements on single molecules which were up to now the domain of high-energy physics. One example is the important question whether the physical constants of nature are actually really constant.

Matthias Germann, Xin Tong and Stefan Willitsch "Observation of electric-dipole-forbidden infrared transitions in cold molecular ions" Nature Physics, doi: 10.1038/nphys3085

.


Related Links
University of Basel
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Chemical bond between a superheavy element and a carbon atom established
Mainz, Germany (SPX) Sep 23, 2014
An international collaboration led by research groups from Mainz and Darmstadt has achieved the synthesis of a new class of chemical compounds for superheavy elements at the RIKEN Nishina Center for Accelerator-based Research (RNC) in Japan. For the first time, a chemical bond was established between a superheavy element - seaborgium (element 106) in the present study - and a carbon atom. ... read more


TIME AND SPACE
Year's final supermoon is a Harvest Moon

China Aims for the Moon, Plans to Bring Back Lunar Soil

Electric Sparks May Alter Evolution of Lunar Soil

China to test recoverable moon orbiter

TIME AND SPACE
NASA Mars Spacecraft Ready for Sept. 21 Orbit Insertion

India A New Contender in Asian Space Race or Technological Breakthrough

MAVEN on course for Mars Arrival Sept 21

NASA spacecraft to begin orbiting Mars within days

TIME AND SPACE
NASA Chooses American Companies to Transport US Astronauts to ISS

Space: China's final tourism frontier

NASA's Orion Spacecraft Nears Completion, Ready for Fueling

The long descent

TIME AND SPACE
Astronauts eye China's future space station

China eyes working with other nations as station plans develop

China completes construction of advanced space launch facility

China to launch second space lab in 2016: official

TIME AND SPACE
Boeing, SpaceX to send astronauts to space station

SpaceX To Deliver Science Experiments To ISS For Ames

CASIS Research Set for Launch Aboard SpaceX Mission to ISS

4th SpaceX Cargo Mission to ISS Dragon Scheduled for Sep 20

TIME AND SPACE
Elon Musk gets fresh challenge with space contract

Proton Launches May Compete on Price With US Falcons

NASA's Wind-Watching ISS-RapidScat Ready for Launch

SpaceX's next cargo launch set for Sept 20

TIME AND SPACE
Chandra Finds Planet That Makes Star Act Deceptively Old

Solar System Simulation Reveals Planetary Mystery

'Hot Jupiters' provoke their own host suns to wobble

First evidence for water ice clouds found outside solar system

TIME AND SPACE
Larry Ellison releases helm of mighty Oracle ship

Mussel-inspired MIT glue may have naval, medical applications

'Priceless' 600-tonne jade deposit found in China

NASA Awards Cross-track Infrared Sounder For JPS System-2 Bird




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.