Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Ultracool Stars Take Wild Rides Around The Milky Way
by Staff Writers
Pasadena CA (SPX) Jun 12, 2009


Sanderson's calculations showed an unexpected diversity in the ultracool subdwarf orbits. Some plunge deep into the center of the Milky Way on eccentric, comet-like tracks; others make slow, swooping loops far beyond the Sun's orbit. Unlike the majority of nearby stars, most of the ultracool subdwarfs spend a great deal of time thousands of light-years above or below the disk of the Milky Way.

Astronomers have found that stars of a recently discovered type, dubbed ultracool subdwarfs, take some pretty wild rides as they orbit around the Milky Way, following paths that are very different from those of typical stars. One of them may actually be a visitor that originated in another galaxy.

Adam Burgasser and John Bochanski of MIT presented the findings at the American Astronomical Society's semi-annual meeting in Pasadena, Calif. The result clarifies the origins of these peculiar, faint stars, and may provide new details on the types of stars the Milky Way has acquired from other galaxies.

Ultracool subdwarfs were first recognized as a unique class of stars in 2003, and are distinguished by their low temperatures ("ultracool") and low concentrations of elements other than hydrogen and helium ("subdwarf").

They sit at the bottom end of the size range for stars, and some are so small that they are closer to the planet-like objects called brown dwarfs. Only a few dozen ultracool subdwarfs are known today, as they are both very faint - up to 10,000 times fainter than the Sun - and extremely rare.

Burgasser, associate professor of physics at MIT and lead author of the study, was intrigued by the fast motions of ultracool subdwarfs, which zip past the Sun at astonishing speeds.

"Most nearby stars travel more or less in tandem with the Sun tracing circular orbits around the center of the Milky Way once every 250 million years," he explains. The ultracool subdwarfs, on the other hand, appear to pass us by at very high speeds, up to 500 km/s, or over a million miles per hour.

"If there are interstellar cops out there, these stars would surely lose their driver's licenses," says Burgasser.

Burgasser's team of astronomers assembled measurements of the positions, distances, and motions of roughly two dozen of these rare stars. Robyn Sanderson, co-author and MIT graduate student, then used these measurements to calculate the orbits of the subdwarfs using a numerical code developed to study galaxy collisions. Despite doing similar calculations for other types of low-mass stars, "these orbits were like nothing I'd ever seen before," says Sanderson.

Sanderson's calculations showed an unexpected diversity in the ultracool subdwarf orbits. Some plunge deep into the center of the Milky Way on eccentric, comet-like tracks; others make slow, swooping loops far beyond the Sun's orbit. Unlike the majority of nearby stars, most of the ultracool subdwarfs spend a great deal of time thousands of light-years above or below the disk of the Milky Way.

"Someone living on a planet around one of these subdwarfs would have an incredible nighttime view of a beautiful spiral galaxy - our Milky Way - spread across the sky," Burgasser speculates.

Sanderson's orbit calculations confirm that all of the ultracool subdwarfs are part of the Milky Way's halo, a widely dispersed population of stars that likely formed in the Milky Way's distant past. However, one of the subdwarfs, a star named 2MASS 1227-0447 in the constellation Virgo, has an orbit indicating that it might have a very different lineage, possibly extragalactic.

"Our calculations show that this subdwarf travels up to 200,000 light years away from the center of the Galaxy, almost 10 times farther than the Sun," says Bochanski, a postdoctoral researcher in Burgasser's group at MIT. This is farther than many of the Milky Way's nearest galactic neighbors, suggesting that this particular subdwarf may have originated somewhere else.

"Based on the size of its one-billion-year orbit and direction of motion, we speculate that 2MASS 1227-0447 might have come from another, smaller galaxy that at some point got too close to the Milky Way and was ripped apart by gravitational forces," explains Bochanksi.

Astronomers have previously identified streams of stars in the Milky Way originating from neighboring galaxies, but all have been distant, massive, red giant stars. The ultracool subdwarf identified by Burgasser and his team is the first nearby, low-mass star to be found on such a trajectory. "If we can identify what stream this star is associated with, or which dwarf galaxy it came from, we could learn more about the types of stars that have built up the Milky Way's halo over the past 10 billion years," says Burgasser.

.


Related Links
MIT
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





STELLAR CHEMISTRY
Submillimeter Array Finds Massive Core In Cold Dark Cloud
Manoa HI (SPX) Jun 12, 2009
Astronomers using the Submillimeter Array atop Mauna Kea in Hawaii have found a massive, quiescent object in a dark cloud that is likely to be the direct progenitor of a massive star or stars. Dr. Jonathan Swift of the Institute for Astronomy at the University of Hawaii at Manoa is presenting these results at a press conference at the American Astronomical Society meeting in Pasadena, California ... read more


STELLAR CHEMISTRY
Mapping The Surface Temperatures Of The Moon

Japan lunar probe ends mission, is crashed onto moon

NASA Announces Winners In Lunar Art Contest

New Tool To Visualize Past, Future Lunar Eclipses

STELLAR CHEMISTRY
Spirit Examines Its Underbelly

Opportunity Progresses South

Mars Orbiter Resumes Science Operations

Return Of The Mars Hoax

STELLAR CHEMISTRY
NASA's Ares I-X Rocket Achieves Historic Hardware Milestones

Exploring The Future Of Commercial Space Transportation

A New Way To Measure Cosmic Distances

New Cleaning Protocol For Future Search For Life Missions

STELLAR CHEMISTRY
China to launch Mars space probe

China To Launch First Mars Probe In Second Half Of 2009

China Launches Yaogan VI Remote-Sensing Satellite

China Able To Send Man To Moon Around 2020

STELLAR CHEMISTRY
Canadian Space Tourist Starts Training For ISS Mission

Work Completed On ISS Docking Bay

ISS Astronauts Complete Spacewalk, Test New Russian Spacesuits

Space station crew doubles to six for first time

STELLAR CHEMISTRY
ILS Announces Two Additional Firm Proton Launches

Stat X Fire Suppression System Selected For Giant Crawlers

Arianespace Receives Ariane 5 For Its TerreStar-1 Mission

SPACEX And ATSB Announce New Launch Date For Razaksat Satellite

STELLAR CHEMISTRY
Planet-Forming Disk Orbiting Twin Suns Revealed

Planet-Hunting Method Succeeds At Last

New Method For Finding Alien Oceans

Let The Planet Hunt Begin

STELLAR CHEMISTRY
CapRock Government Solutions Receives Satellite Industry Leadership Award

Outside View: Navy needs its Hawkeye

Smallest microwave is just a prototype

Study determines strength of rammed earth




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement