Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Ultra-Fast Magnetic Reversal Observed
by Staff Writers
Berlin, Germany (SPX) Apr 18, 2011


Top, centre: While the magnetization of gadolinium (red arrow) has not yet changed, the magnetization of iron (blue arrow) has already reversed. Large picture: The laser pulse (pink) triggers magnetic reversal, while the X-ray pulse (blue) measures it. Image: HZB/Radu

A newly discovered magnetic phenomenon could accelerate data storage by several orders of magnitude.

With a constantly growing flood of information, we are being inundated with increasing quantities of data, which we in turn want to process faster than ever. Oddly, the physical limit to the recording speed of magnetic storage media has remained largely unresearched. In experiments performed on the particle accelerator BESSY II of Helmholtz-Zentrum Berlin, Dutch researchers have now achieved ultrafast magnetic reversal and discovered a surprising phenomenon.

In magnetic memory, data is encoded by reversing the magnetization of tiny points. Such memory works using the so-called magnetic moments of atoms, which can be in either "parallel" or "antiparallel" alignment in the storage medium to represent to "0" and "1".

The alignment is determined by a quantum mechanical effect called "exchange interaction". This is the strongest and therefore the fastest "force" in magnetism. It takes less than a hundred femtoseconds to restore magnetic order if it has been disturbed. One femtosecond is a millionth of a billionth of a second.

Ilie Radu and his colleagues have now studied the hitherto unknown behaviour of magnetic alignment before the exchange interaction kicks in. Together with researchers from Berlin and York, they have published their results in Nature (DOI: 10.1038/nature09901, 2011).

For their experiment, the researchers needed an ultra-short laser pulse to heat the material and thus induce magnetic reversal. They also needed an equally short X-ray pulse to observe how the magnetization changed.

This unique combination of a femtosecond laser and circular polarized, femtosecond X-ray light is available in one place in the world: at the synchrotron radiation source BESSY II in Berlin, Germany.

In their experiment, the scientists studied an alloy of gadolinium, iron and cobalt (GdFeCo), in which the magnetic moments naturally align antiparallel. They fired a laser pulse lasting 60 femtoseconds at the GdFeCo and observed the reversal using the circular-polarized X-ray light, which also allowed them to distinguish the individual elements.

What they observed came as a complete surprise: The Fe atoms already reversed their magnetization after 300 femtoseconds while the Gd atoms required five times as long to do so.

That means the atoms were all briefly in parallel alignment, making the material strongly magnetized. "This is as strange as finding the north pole of a magnet reversing slower than the south pole," says Ilie Radu.

With their observation, the researchers have not only proven that magnetic reversal can take place in femtosecond timeframes, they have also derived a concrete technical application from it: "Translated to magnetic data storage, this would signify a read/write rate in the terahertz range. That would be around 1000 times faster than present-day commercial computers," says Radu.

.


Related Links
Helmholtz-Berlin
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Researchers Discover The Cause Of Irradiation-Induced Instability In Materials Surfaces
Boston MA (SPX) Apr 18, 2011
A new discovery about the dynamic impact of individual energetic particles into a solid surface improves our ability to predict surface stability or instability of materials under irradiation over time. The finding may lead to the design of improved structural materials for nuclear fission and fusion power plants, which must withstand constant irradiation over decades. It may also accelera ... read more


TECH SPACE
BRP To Contribute To Canadian Moon And Mars Exploration Programs

Naveen Jain Co-Founder And Chairman Of Moon Express

Project Morpheus To Begin Testing At NASA's Johnson Space Center

NASA Announces Winners Of 18th Annual Great Moonbuggy Race

TECH SPACE
Mars Rover's 'Gagarin' Moment Applauded Exploration

Mars Flight Possible After 2035

Several Drives This Week Put Opportunity Over 17-Mile Mark

Next Mars Rover Nears Completion

TECH SPACE
NASA Awards Next Set Of Commercial Crew Development Agreements

LockMart Commends Congressional Action On NASA Spacecraft

NASA spared cuts in US spending bill passage

NASA mission control named for Chris Kraft

TECH SPACE
Asia's star ever brighter in space

What Future for Chang'e-2

China setting up new rocket production base

China's Tiangong-1 To Be Launched By Modified Long March II-F Rocket

TECH SPACE
Roberto Vittori's DAMA Mission To ISS

Northrop Grumman To Test Heat Management System On ISS

The MELFI Shuffle: Contingency Planning For Preserving Samples

Space Debris No Threat To ISS

TECH SPACE
India Starts Countdown For Launch Of Three Satellites

Kazakh Space Launch Project Delayed Until 2017

Putin Urges Ukraine To Join New Russian Space Center Project

Arianespace to launch ASTRA 2E Satellite

TECH SPACE
Titan-Like Exoplanets

A New Way To Find Planets

Telescope Ferrets Out Planet-Hunting Targets

White Dwarfs Could Be Fertile Ground For Other Earths

TECH SPACE
Researchers Discover The Cause Of Irradiation-Induced Instability In Materials Surfaces

ITT's Commercial Imaging Payload Passes Major Milestone

Eco-Friendly Treatment For Blue Jeans Offers Alternative To Controversial Sandblasting

Japan's TEPCO pours radiation-absorbing mineral in sea




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement