Subscribe free to our newsletters via your
. 24/7 Space News .




EXO LIFE
UW Team's Plants Return To Earth After Growing In Space
by Staff Writers
Madison WI (SPX) Nov 11, 2014


File image.

Researchers at Simon Gilroy's lab in the Department of Botany at the University of Wisconsin-Madison expect to greet a truck this afternoon that is carrying small containers holding more than 1,000 frozen plants that germinated and grew aboard the International Space Station.

On Tuesday, when Gilroy's team inspected the plants at the Kennedy Space Center in Florida, they saw exactly what they wanted: Petri dishes holding seedlings that sprouted and grew in weightlessness.

In Madison, the plants will go directly into a deep freeze. After being thawed in a few months, they will donate their RNA to an instrument that will measure the activity of all of their approximately 30,000 genes.

Half of the plants will become subjects in Gilroy's longstanding exploration of the genetic control of the proteins that enable plants to grow in zero gravity. "Gravity is a fantastically pervasive force that affects all biology," says Gilroy.

"One astronaut observed that plants get lazy in a weightless environment; they grow long and thin, and don't lay down strong material, just like people lose bone mass in space because it isn't needed for supporting weight."

The other half of the experiment represents a departure for Gilroy, and for NASA, the agency supporting this area of space research. After these plants undergo a similar genetic analysis at UW-Madison's Biotech Center, the data will get an initial check-over from Gilroy's group. And then a treasure trove of digital data on plant genetic activity in microgravity will be made available to any researcher interested in mining it.

"Access to space is very rare," Gilroy says.

"Traditionally, a research group will put an experiment in space, get the results and publish. But NASA is trying a new mode, called geneLAB, where the research group will put organisms in space, then, as soon as possible, release the raw data to anyone who wants to analyze it. They hope it will speed up major advances on these tiny samples that we can afford to place in space. I see this as open-source science."

Through the process called transcription, genes produce RNA that becomes the template for proteins, and in both sets of experiments, the RNA data will show which genes become more or less active in microgravity, when compared to an identical set of plants grown on Earth.

While Gilroy plans to focus on structural proteins, the geneLAB experiment compares four variants of Arabidopsis called ecotypes. "This data should provide a broad field of investigation - far more than one lab can handle," Gilroy says.

"We are going to end up with an enormous amount of transcription data. We will do some initial work to check the major genes which go up or down, but there's tremendous potential for further analysis by other labs around the world."

But while the geneLab approach sounds promising, Gilroy concedes that it carries no guarantees. "This may be a path forward in crowd-sourcing science. At the least, as a single lab we could never analyze this data as fully as many labs around the world all working with it."

The "Biological Research in Canister" containers that held these experiments on board the space station were designed, tested and operated according to NASA's rigorous approach, Gilroy says.

"Each project represents an enormous investment, and you really want everything to go perfectly. You become one of the most careful scientists in the world. You test everything, make duplicates, and are always considering what may go wrong so you can do another test."

NASA is an unfamiliar world to most botanists, but Gilroy seems to be enjoying every step of the way, and has even learned the organization's peculiar parlance.

"At first, talking in acronyms is very strange," he says, "and you can't understand anything when NASA people start going into NASA-speak. But once you get into it, you catch yourself doing the exact same thing."

In the microgravity experiments, Gilroy is exploring the genetic basis of a phenomenon known to gardeners and horticulturalists for many years. Plants that grow up without mechanical stresses - due to wind, rain or other disturbances - "are much more susceptible to pests, are not as robust," Gilroy says, "but if you go into a greenhouse and shake the plants, they grow up more compact, strong, and resistant to stress. They are even more resistant to plant diseases."

It turns out that the same signaling system used to detect mechanical stresses like gravity is also used to defend against pathogens. That may explain why plants in space appear more susceptible to disease.

That overlap raises the stakes for understanding the impact of gravity on plants beyond the notion of building stronger crops that can stand up in the field. Understanding the signals could help in the never ending battle against plant disease.

Likewise, NASA has its own practical interest in the research: Plants will supply food and oxygen for long-distance space travel, and keeping them healthy will be a matter of life and death. "If you are growing plants as part of a human life support system," Gilroy says, "you'd rather not have them suddenly die."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Wisconsin-Madison
Life Beyond Earth
Lands Beyond Beyond - extra solar planets - news and science






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EXO LIFE
Life Can Survive on Much Less Water Than You Might Think
Moffett Field CA (SPX) Nov 05, 2014
"Follow the water" has long been the mantra of our scientific search for alien life in the Solar System and beyond. We continue seeking conditions where water can remain liquid either on a world's surface or elsewhere within a planetary body. This approach makes a lot of sense. Life as we know it requires water for the complex chemistry that enables growth and reproduction. Where there is water, ... read more


EXO LIFE
China examines the three stages of lunar test run

China gears up for lunar mission after round-trip success

NASA's LRO Spacecraft Captures Images of LADEE's Impact Crater

New lunar mission to test Chang'e-5 technology

EXO LIFE
Comet flyby of Mars changed chemistry of atmosphere: NASA

NASA's Curiosity Mars Rover Finds Mineral Match

MAVEN Continues Mars Exploration Begun 50 Years Ago by Mariner 4

You can't get to Mars, but your name can

EXO LIFE
Synthetic Biology for Space Exploration

India to launch unmanned crew module in December

Orion Takes Big Step Before Moving to the Launch Pad

NASA Program Enhances Climate Resilience at Agency Facilities

EXO LIFE
China to build global quantum communication network in 2030

China's Lunar Orbiter Makes Safe Landing, First in 40 Years

China's First Lunar Return Mission A Stunning Success

China completes first mission to moon and back

EXO LIFE
International Space Station astronauts put GoPro camera in a floating ball of water

ISS Agency Heads Issue Joint Statement

Station Trio Prepares for Departure amid Ongoing Science

Students text International Space Station using a 20-foot antenna

EXO LIFE
Soyuz Installed at Baikonur, Expected to Launch Wednesday

India to test fly bigger space vehicle next month

Spaceflight partners with JAMSS to loft 8 CubeSats on JAXA mission

Arianespace signs contract with ELV for ten Vega launchers

EXO LIFE
Peering into Planetary Atmospheres

VLTI detects exozodiacal light

Yale finds a planet that won't stick to a schedule

In a first, astronomers map comets around another star

EXO LIFE
Shaking the topological cocktail of success

From earphones to jet engines, 3D printing takes off

Five years in space: one satellite, three missions

French watchdog urges no 3D for under sixes




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.