Subscribe free to our newsletters via your
. 24/7 Space News .

UT Dallas-led team makes powerful muscles from fishing line and sewing thread
by Staff Writers
Dallas TX (SPX) Feb 26, 2014

Researchers at the University of Texas at Dallas have created artificial muscles by twisting and coiling ordinary fishing line. Image courtesy University of Texas at Dallas.

An international team led by The University of Texas at Dallas has discovered that ordinary fishing line and sewing thread can be cheaply converted to powerful artificial muscles.

The new muscles can lift a hundred times more weight and generate a hundred times higher mechanical power than the same length and weight of human muscle. Per weight, they can generate 7.1 horsepower per kilogram, about the same mechanical power as a jet engine.

In a paper published Feb. 21 in the journal Science, researchers explain that the powerful muscles are produced by twisting and coiling high-strength polymer fishing line and sewing thread. Scientists at UT Dallas's Alan G. MacDiarmid NanoTech Institute teamed with scientists from universities in Australia, South Korea, Canada, Turkey and China to accomplish the advances.

The muscles are powered thermally by temperature changes, which can be produced electrically, by the absorption of light or by the chemical reaction of fuels. Twisting the polymer fiber converts it to a torsional muscle that can spin a heavy rotor to more than 10,000 revolutions per minute.

Subsequent additional twisting, so that the polymer fiber coils like a heavily twisted rubber band, produces a muscle that dramatically contracts along its length when heated, and returns to its initial length when cooled. If coiling is in a different twist direction than the initial polymer fiber twist, the muscles instead expand when heated.

Compared to natural muscles, which contract by only about 20 percent, these new muscles can contract by about 50 percent of their length. The muscle strokes also are reversible for millions of cycles as the muscles contract and expand under heavy mechanical loads.

"The application opportunities for these polymer muscles are vast," said corresponding author Dr. Ray Baughman, the Robert A. Welch Distinguished Chair in Chemistry at UT Dallas and director of the NanoTech Institute. "Today's most advanced humanoid robots, prosthetic limbs and wearable exoskeletons are limited by motors and hydraulic systems, whose size and weight restrict dexterity, force generation and work capability."

Baughman said the muscles could be used for applications where superhuman strengths are sought, such as robots and exoskeletons. Twisting together a bundle of polyethylene fishing lines, whose total diameter is only about 10 times larger than a human hair, produces a coiled polymer muscle that can lift 16 pounds. Operated in parallel, similar to how natural muscles are configured, a hundred of these polymer muscles could lift about 0.8 tons, Baughman said.

On the opposite extreme, independently operated coiled polymer muscles having a diameter less than a human hair could bring life-like facial expressions to humanoid companion robots for the elderly and dexterous capabilities for minimally invasive robotic microsurgery. Also, they could power miniature "laboratories on a chip," as well as devices for communicating the sense of touch from sensors on a remote robotic hand to a human hand.

The polymer muscles are normally electrically powered by resistive heating using the metal coating on commercially available sewing thread or by using metal wires that are twisted together with the muscle. For other applications, however, the muscles can be self-powered by environmental temperature changes, said Carter Haines, lead author of the study.

"We have woven textiles from the polymer muscles whose pores reversibly open and close with changes in temperature. This offers the future possibility of comfort-adjusting clothing," said Haines, who started his research career in Baughman's lab as a high school student doing summer research through the NanoExplorers program, which Baughman initiated. Haines earned an undergraduate physics degree from UT Dallas and is now a doctoral student in materials science and engineering.

The research team also has demonstrated the feasibility of using environmentally powered muscles to automatically open and close the windows of greenhouses or buildings in response to ambient temperature changes, thereby eliminating the need for electricity or noisy and costly motors.

Other UT Dallas Nanotech Institute researchers involved with the work are Dr. Shaoli Fang, associate research professor; Dr. Marcio Lima and Dr. Mikhail Kozlov, research scientists; Dr. Na Li, Dr. Monica Jung de Andrade, Dr. Jiyoung Oh and Dr. Xavier Lepro, research associates; and Benjamin Swedlove, graduate research assistant.

International collaborators are Dr. Geoffrey M. Spinks, Dr. Javad Foroughi, Sina Naficy and Dr. Gordon G. Wallace from the University of Wollongong (Australia); Dr. Fatma Goktepe and Dr. Ozer Goktepe from Namik Kemal University (Turkey); Shi Hyeong Kim and Dr. Seon Jeong Kim from Hanyang University (Korea); Seyed M. Mirvakili and Dr. John D. W. Madden from the University of British Columbia (Canada); and Xiuru Xu from Jilin University (China).


Related Links
University of Texas at Dallas
Space Technology News - Applications and Research

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Lagos gets on its bike with recycling 'loyalty' scheme
Lagos (AFP) Feb 21, 2014
Nigeria's biggest city Lagos is home to some 20 million people and produces a staggering 10,000 tonnes of waste every day, a lot of which piles up on the busy streets or floats in open sewers. Currently, an estimated 40 percent of the megacity's waste is collected and taken to massive rubbish dumps, where scavengers pick through it for scrap and salvage to sell. But a new scheme is hopin ... read more

China Focus: Uneasy rest begins for China's troubled Yutu rover

Is Yutu Stuck?

Japan's Pocari Sweat bound for the moon: maker

Lunar ownership laws: a future necessity?

NASA Mars Orbiter Views Opportunity Rover on Ridge

Curiosity Adds Reverse Driving for Wheel Protection

Curiosity Drives On After Crossing Martian Dune

The World Above and Beyond

DARPA Open Catalog Makes Agency-Sponsored Software and Publications Available to All

Orion Underway Recovery Testing Begins off the Coast of California

Inside astronaut Alexander's head

NASA Welcomes University Participants to Develop Science Payloads

No Call for Yutu

What's up, Yutu

China's Jade Rabbit rover comes 'back to life'

Yutu Awakes

Space suit leak happened before, NASA admits

NASA Seeks US Industry Feedback on Options for Future ISS Cargo Services

NASA, International Space Station Partners Announce Future Crew Members

Andrews Space Cargo Module Power Unit Provides Power For Payloads Bound For ISS

'Mission of Firsts' Showcased New Range-Safety Technology at NASA Wallops

First Copernicus satellite at launch site

Arianespace to launch OPTSAT 3000 and VENuS satellites

Lighter engines a headache for satellite launcher Ariane

NASA cries planetary 'bonanza' with 715 new worlds

Detection of Water Vapor in the Atmosphere of a Hot Jupiter

ESA selects planet-hunting PLATO mission

Rife with hype, exoplanet study needs patience and refinement

EIAST showcases DubaiSat-2 results, plans for KhalifaSat at space conference in Singapore

A New Way to Create Porous Materials

USAF reveals 'neighborhood watch' satellite program

UT Dallas-led team makes powerful muscles from fishing line and sewing thread

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.