Subscribe free to our newsletters via your
. 24/7 Space News .




IRON AND ICE
UMD-Led EPOXI Science Team Publishes Latest Comet Findings
by Staff Writers
College Park MD (SPX) Jun 17, 2011


The EPOXI mission found that the strong activity in water release and carbon dioxide-powered jets did not occur equally in the different regions of the comet.

Comet Hartley 2, is in a hyperactive class of its own compared to other comets visited by spacecraft, says a University of Maryland-led study published in the June 17 issue of the journal Science. The comet was visited last fall by NASA's Deep Impact spacecraft during its EPOXI mission.

The EPOXI science team's new, in-depth analysis of the images and data taken during the flyby confirms its principal earlier finding that carbon dioxide is the volatile fuel for Hartley 2's ice-spewing jets.

The study also provides several new twists in the unfolding story of this small cometary dynamo including that:

(1) the smooth, relatively inactive waist of the peanut shaped comet is likely re-deposited, and thus evolutionary rather than primordial material;

(2) Hartley 2 has an 'excited state of rotation' because it spins around one axis, but also tumbles around a different axis; and

(3) on its larger, rougher ends, the comet's surface is dotted with glittering, blocky objects that can reach approximately 165 feet (50 meters) high and 260 feet (80 meters) wide.

"Hartley 2 is a hyperactive little comet, spewing out more water than other comets its size, said University of Maryland Astronomer Michael A'Hearn, who is lead author on the Science paper and principal investigator for the EPOXI and Deep Impact missions. "When warmed by the sun, dry ice [frozen carbon dioxide] deep in the comet's body turns to gas jetting off the comet and dragging water ice with it.

"Although, Hartley 2 is the only such hyperactive comet visited by a spacecraft, we know of at least a dozen other comets that also are relatively high in activity for their size and which are probably driven by carbon dioxide or carbon monoxide," said A'Hearn, who won the 2008 Kuiper astronomy prize for seminal contributions over his career to the study of comets.

"These could represent a separate class of hyperactive comets or just a continuum in comet activity extending from Hartley 2-like comets all the way to the much less active, 'normal' comets that we are more used to seeing."

The EPOXI mission found that the strong activity in water release and carbon dioxide-powered jets did not occur equally in the different regions of the comet. During the spacecraft's flyby of the comet - with closest approach of 431 miles (694 km) on November 4, 2011 - carbon dioxide driven jets were seen at the ends of the comet with most occurring at the small end. The water ice particles driven out by these jets created a "snowstorm" through which the spacecraft flew.

In the middle region or waist of the comet, water was released as vapor with very little carbon dioxide or ice. The latter findings indicate that material in the waist is likely a product of the activity at the ends of the comet, the researchers say.

"We think the waist is a deposit of material from other parts of the comet, our first evidence of redistribution on a comet," said University of Maryland Astronomer Jessica Sunshine, who is deputy principal investigator for the EPOXI mission.

"The most likely mechanism is that some fraction of the dust, icy chunks, and other material coming off the ends of the comet are moving slowly enough to be captured by even the very weak gravity of this small comet. This material then falls back into the lowest point, the middle," said Sunshine, who is principal investigator for Comet Hopper, a mission proposal that is a finalist for selection by NASA as a new planetary mission in the agency's Discovery Program.

The researchers also say that their EPOXI findings indicate the small end of the comet appears to release about twice as much carbon dioxide relative to the amount of water released than does the large end. If true, they write, this difference almost certainly indicates a primordial difference in composition between the two ends, a difference present since this comet's formation.

However, they note that for now this is still a tenuous conclusion. The complex rotation and tumble of Hartley 2 makes it hard to definitively correlate differences in carbon dioxide to water ratios with compositional differences for the two ends of the comet.

"Not only does the total brightness of Hartley 2 vary, but the dust and gas structures in its coma show occasional hiccups over the course of several rotations, phenomena characteristic of a complex rotation state, said study coauthor Tony Farnham, an associate research scientist at the University of Maryland. "These observations suggest that there is something unique about the activity on Hartley 2 that has a major influence on its dynamical state."

In comets, the release of dust and water vapor and the activation of carbon dioxide (and other volatiles) jets are the result of solar heating on the sunward side of a comet.

Thus, a complete understanding of how the dual axis rotations affect the amount solar heating that each end of the comet receives is needed in order to determine how much solar heating versus true primordial compositional differences influenced the type and amount of material that is observed streaming out of the comet at both ends.

Ground based observations can measure, over a much longer period of time, the rotational behavior of Hartley 2, as well as the compositional variations in the extended coma, the cloud of dust and gas surrounding the body of the comet," said coauthor Lori Feaga, an assistant research scientist at the University of Maryland.

"Several other research groups have made such observations of the comet, and their finding will assist us in jointly disentangling the underlying cause of Hartley 2's heterogeneity.

The study notes that another EPOXI discovery is that on the knobby ends of Hartley 2, particularly the smaller end, the surface terrain is dotted with block-like, shiny objects, some as big as a block-long, 16-story-tall building - tops of 165 feet (50 meters) high and 260 feet (80 meters) wide. The study says the objects appear to be two to three times more reflective than the surface average.

"These are spectacular features, but at this point we don't know whether these are deposits or growths, or something else," said Sunshine.

Deep Impact on Comet Science
Comets are fundamental building blocks of the giant planets and may have been an important source by which water and organics - the essentials of life as we know it - came to Earth. On its EPOXI mission the Deep Impact spacecraft flew by Hartley 2 on Nov. 4, 2010, just a few weeks after the comet had passed within 11 million miles of Earth.

Equipped with two telescopes with digital color cameras and a near-infrared spectrometer, the spacecraft beamed back more than 117,000 images and spectra of Hartley 2 during an imaging period encompassing 2 months on approach of the comet and 3 weeks on departure. With its EPOXI mission data, the Deep Impact spacecraft added to its extensive scientific legacy.

Launched in January 2005, the spacecraft made history and world-wide UMD-Led EPOXI Science Team Publishes Latest Comet Findingss when it smashed a probe into comet Tempel 1 on July 4th of that year.

Following the conclusion of that mission, a Maryland-led team of scientists won approval from NASA to fly the Deep Impact spacecraft to a second comet as part of an extended mission named EPOXI (Extrasolar Planet Observation and Deep Impact Extended Investigation).

.


Related Links
University of Maryland
Asteroid and Comet Mission News, Science and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








IRON AND ICE
Science Paper Details NASA Epoxi Flyby of Hyper Comet
Pasadena CA (JPL) Jun 17, 2011
Comet Hartley 2's hyperactive state, as studied by NASA's EPOXI mission, is detailed in a new paper published in this week's issue of the journal Science. After visiting a comet and imaging distant stars for hints of extrasolar planets, you could say the spacecraft used for EPOXI had seen its fair share of celestial wonders. But after about 3.2 billion miles (5.1 billion kilometers) of deep spac ... read more


IRON AND ICE
CMU and Astrobotic Technology Complete Structural Assembly of Lunar Lander

Blood Red Moon Predicted

NASA Releases New Lunar Eclipse Video

The Power of A Moon Rock

IRON AND ICE
Countering Contamination for Mars Spacesuits

Opportunity Breaks Backward Driving Record

Entry, descent and surface science for 2016 Mars mission

Up, Up and Away for Mars

IRON AND ICE
Iran to put a monkey into space: report

Despite budget stress, US space ties strong: NASA

International Conference On Low-Cost Planetary Missions

From Backpacking to Space Trekking

IRON AND ICE
China's second moon orbiter Chang'e-2 goes to outer space

Building harmonious outer space to achieve inclusive development

China's Fengyun-3B satellite goes into official operation

Venezuela, China to launch satellite next year

IRON AND ICE
European space freighter poised for suicide plunge

Keeping Cool With Heat Pipes on the Space Station

Russia's Mission Control raises ISS orbit by 19.2 km

Japan astronaut tweets about space sickness

IRON AND ICE
Arianespace receives the next Ariane 5 for launch in 2011

SpaceX Secures Launch Contract In Major Asian Market

SES-3 Satellite Arrives At Baikonour Launch Base

Shipments Of Sea Launch Zenit-3Sl Hardware Resume On Schedule

IRON AND ICE
CoRoT's new detections highlight diversity of exoplanets

Rage Against the Dying of the Light

Second Rocky World Makes Kepler-10 a Multi-Planet System

Kepler's Astounding Haul of Multiple-Planet Systems Just Keeps Growing

IRON AND ICE
Coming to TV Screens of the Future: A Sense of Smell

Gamers griping handheld controls

Microsoft Kinect makes moves on computers

Sporian Developing High Temperature Pressure Sensor for NASA




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement