Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
UCSF Team Develops "Logic Gates" To Program Bacteria As Computers
by Staff Writers
San Francisco, CA (SPX) Dec 10, 2010


The Nature paper describes how the Voigt team built simple logic gates out of genes and inserted them into separate E. coli strains. The gate controls the release and sensing of a chemical signal, which allows the gates to be connected among bacteria much the way electrical gates would be on a circuit board.

A team of UCSF researchers has engineered E. coli with the key molecular circuitry that will enable genetic engineers to program cells to communicate and perform computations.

The work builds into cells the same logic gates found in electronic computers and creates a method to create circuits by "rewiring" communications between cells. This system can be harnessed to turn cells into miniature computers, according to findings that will be reported in an upcoming issue of Nature.

That, in turn, will enable cells to be programmed with more intricate functions for a variety of purposes, including agriculture and the production of pharmaceuticals, materials and industrial chemicals, according to Christopher A. Voigt, PhD, a synthetic biologist and associate professor in the UCSF School of Pharmacy's Department of Pharmaceutical Chemistry who is senior author of the paper.

The most common electronic computers are digital, he explained; that is, they apply logic operations to streams of 1's and 0's to produce more complex functions, ultimately producing the software with which most people are familiar. These logic operations are the basis for cellular computation, as well.

"We think of electronic currents as doing computation, but any substrate can act like a computer, including gears, pipes of water, and cells," Voigt said. "Here, we've taken a colony of bacteria that are receiving two chemical signals from their neighbors, and have created the same logic gates that form the basis of silicon computing."

Applying this to biology will enable researchers to move beyond trying to understand how the myriad parts of cells work at the molecular level, to actually use those cells to perform targeted functions, according to Mary Anne Koda-Kimble, dean of the UCSF School of Pharmacy.

"This field will be transformative in how we harness biology for biomedical advances," said Koda-Kimble, who championed Voigt's recruitment to lead this field at UCSF in 2003. "It's an amazing and exciting relationship to watch cellular systems and synthetic biology unfold before our eyes."

The Nature paper describes how the Voigt team built simple logic gates out of genes and inserted them into separate E. coli strains. The gate controls the release and sensing of a chemical signal, which allows the gates to be connected among bacteria much the way electrical gates would be on a circuit board.

"The purpose of programming cells is not to have them overtake electronic computers," explained Voigt, whom Scientist magazine named a "scientist to watch" in 2007 and whose work is included among the Scientist's Top 10 Innovations of 2009. "Rather, it is to be able to access all of the things that biology can do in a reliable, programmable way."

The research already has formed the basis of an industry partnership with Life Technologies, in Carlsbad, Cal., in which the genetic circuits and design algorithms developed at UCSF will be integrated into a professional software package as a tool for genetic engineers, much as computer-aided design is used in architecture and the development of advanced computer chips.

The automation of these complex operations and design choices will advance basic and applied research in synthetic biology. In the future, Voigt said the goal is to be able to program cells using a formal language that is similar to the programming languages currently used to write computer code.

The lead author of the paper is Alvin Tamsir, a student in the Biochemistry and Molecular Biology, Cell Biology, Developmental Biology, and Genetics (Tetrad) Graduate Program at UCSF. Jeffrey J. Tabor, PhD, in the UCSF School of Pharmacy, is a co-author.

.


Related Links
UCSF
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Tiny Laser Light Show Illuminates Quantum Computing
Washington DC (SPX) Dec 10, 2010
A new laser-beam steering system that aims and focuses bursts of light onto single atoms for use in quantum computers has been demonstrated by collaborating researchers from Duke University and the University of Wisconsin-Madison. Described in the journal Applied Physics Letters, published by the American Institute of Physics, the new system is somewhat like the laser-light-show projectors ... read more


CHIP TECH
Robotic Excavations Could Help Get Helium 3 From Moon To Earth

A Softer Landing on the Moon

Neptec Wins Canadian Space Agency Contract To Develop A New Generation Of Lunar Rovers

Mission to far side of moon proposed

CHIP TECH
The Three Ages Of Mars

Odyssey Orbiter Nears Martian Longevity Record

Drilling For The Future Of Science

Opportunity Imaging Small Craters On Way To Endeavour

CHIP TECH
Discovery Of The Secrets That Enable Plants Near Chernobyl To Shrug Off Radiation

South Africa unveils space agency

NASA sells PCs still containing data

SwRI Researchers Continue Starfighters Suborbital Space Flight Training

CHIP TECH
China Builds Theme Park In Spaceport

Tiangong Space Station Plans Progessing

China-Made Satellite Keeps Remote Areas In Venezuela Connected

Optis Software To Optimize Chinese Satellite Design

CHIP TECH
ISS Tracks Months-Long Voyages Of Ships At Sea

Busy Day For ISS Commander

NASA Seeks Nonprofit To Manage ISS National Lab Research

Expedition 25 Returns Home

CHIP TECH
SpaceX Dragon Does Two Orbits Before Pacific Splashdown

NASA, SpaceX giddy over historic orbit launch

ISRO Hands Two Contracts To Arianespace

US company readies first space capsule launch

CHIP TECH
Astronomers Detect First Carbon-Rich Exoplanet

NASA's Spitzer Reveals First Carbon-Rich Planet

Astronomers Discover New Planet In Planetary System Very Similar To Our Own

Super-Earth Has An Atmosphere, But Is It Steamy Or Gassy

CHIP TECH
Taiwan to approve three billion dollar China plant: report

Tablet computers come of age in 2010 with iPad mania

World's First Microlaser Emitting In 3-D

Sony and Sharp launch e-readers, tablets in Japan




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement