Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Tungstenite triangles emit light
by Staff Writers
London, UK (SPX) Feb 28, 2013


Penn State researchers have synthesized triangular single layers of tungsten disulphide. The edges of the triangles exhibit extraordinary photoluminescence, while the interior area does not. The photoluminescent signal disappears as the number of layers increases. (Courtesy: Terrones Lab, Penn State University)

Researchers in the US have succeeded in growing single atomic layers of the naturally occurring mineral tungstenite for the first time. The sheets appear to have unusual photoluminescence properties that might be exploited in optics devices like lasers and light-emitting diodes.

2D materials have dramatically different electronic and mechanical properties from their 3D counterparts and so may find use in a host of novel device applications. Until now, however, most research in this field has focused on the most famous of 2D materials, graphene, but the fact that this material lacks a direct electronic band gap means that scientists are now starting to look at other 2D candidates too.

A team led by Mauricio Terrones and Vincent Crespi of Penn State university in the US grew monolayers of tungstenite (WS2) by depositing tiny crystals of tungsten oxide less than a nanometre tall and then passing these crystals though sulphur vapour at high temperatures of 850C. The result - monolayers of tungsten disulphide arranged in a honeycombed pattern of triangles comprising tungsten atoms bonded to sulphur atoms.

"We were astonished that we could grow such perfect, atomically thick triangle shapes using a chemical vapour deposition method," Terrones told physicsworld.com.

"Moreover, and again to our surprise, we observed that these triangles glow quite strongly at their edges rather than at their centres - a peripheral photoluminescence effect that we never expected and which has not been reported on before."

Photoluminescence occurs when charge carriers (electrons and holes) recombine in a structure to emit light of a different wavelength from that used to initially excite the material.

Normally, light emission is a delicate thing, explained Crespi, and structural defects - like edges - prevent light emission as they tend to give excited electrons and holes ways of recombining without emitting light. "We saw just the opposite effect," he said, "in that the structural defects created close to the edges of a triangle seem to be the favoured place for emitting light."

Direct band gap
2D systems are intrinsically different from their bulk 3D counterparts, and WS2 is no exception. While the bulk material is an indirect band gap semiconductor, the single-layer material boasts a direct band gap. Direct band gaps are important in semiconductors because they allow devices made from these materials to emit light efficiently - as in this case.

According to the Penn State team, the WS2 triangles might find applications in optoelectronics. "They might even come in handy as biomarkers or in drug delivery, but much more research still needs to be carried out before we can say this with any certainty," added Terrones. "They could also be useful in a new generation of planar, 2D optoelectronic devices, such as light-emitting diodes - where we control the propagation of light in thin film layers of material - and even in laser technology."

The researchers now plan to grow other 2D materials that have different optical and electronic properties. Some examples in the pipeline include MoSe2, NbS2 and WSe2, revealed Crespi. "We would also like to better understand and control the light emission from 2D materials in general, and try our hand at sculpting the triangles into multicomponent devices."

The work is detailed in Nano Letters.

.


Related Links
Institute of Physics
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Sustainable new catalysts fueled by a single proton
Chestnut Hill MA (SPX) Feb 26, 2013
Chemists at Boston College have designed a new class of catalysts triggered by the charge of a single proton, the team reports in the most recent edition of the journal Nature. The simple organic molecules offer a sustainable and highly efficient platform for chemical reactions that produce sets of molecules crucial to advances in medicine and the life sciences. Unearthing a reliable, trul ... read more


TECH SPACE
Water On The Moon: It's Been There All Along

Building a lunar base with 3D printing

US, Europe team up for moon fly-by

Russia to Launch Lunar Mission in 2015

TECH SPACE
Lab Instruments Inside Curiosity Eat Mars Rock Powder

First-ever space tourist plans mission to Mars

Mars rover ingests rock powder for tests

Opportunity Is On A Rock Hunt

TECH SPACE
Stanford scientist closes in on a mystery that impedes space exploration

U.S. research to be free online

NASA Creates Space Technology Mission Directorate

Educator Teams Fly On NASA Sofia Airborne Observatory

TECH SPACE
Welcome Aboard Shenzhou 10

Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

Mr Xi in Space

TECH SPACE
Record Number of Students Control ISS Camera

NASA briefly loses contact with space station

Temporary Comm Loss Interrupts Crew's Day

Low-Gravity Flights Will Aid ISS Fluids and Combustion Experiments

TECH SPACE
'Faulty Ukrainian Parts' Blamed for Zenit Launch Failure

The light-lift member of Arianespace's launcher family is readied for its second mission

SpaceX 2 Launch Set for March 1

NASA Releases Glory Taurus XL Launch Failure Report Summary

TECH SPACE
Scientists spot birth of giant planet

NASA's Kepler Mission Discovers Tiny Planet System

Kepler helps astronomers find tiny exo planet

Searching for a Pale Blue SPHERE in the Universe

TECH SPACE
Ancient Egyptian pigment points to new security ink technology

Laser mastery narrows down sources of superconductivity

In probing mysteries of glass, researchers find a key to toughness

Glasses.com turns heads with 3-D iPad app




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement