Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Tracking The Origins Of Speedy Space Particles
by Karen C. Fox
Greenbelt MD (SPX) Feb 01, 2011


An artist's concept of the THEMIS spacecraft as it might appear in orbit. Credit: NASA

NASA's Time History of Events and Macroscale Interaction during Substorms (THEMIS) spacecraft combined with computer models have helped track the origin of the energetic particles in Earth's magnetic atmosphere that appear during a kind of space weather called a substorm.

Understanding the source of such particles and how they are shuttled through Earth's atmosphere is crucial to better understanding the Sun's complex space weather system and thus protect satellites or even humans in space.

The results show that these speedy electrons gain extra energy from changing magnetic fields far from the origin of the substorm that causes them. THEMIS, which consists of five orbiting satellites, helped provide these insights when three of the spacecraft traveled through a large substorm on February 15, 2008.

This allowed scientists to track changes in particle energy over a large distance. The observations were consistent with numerical models showing an increase in energy due to changing magnetic fields, a process known as betatron acceleration.

"The origin of fast electrons in substorms has been a puzzle," says Maha Ashour-Abdalla, the lead author of a Nature Physics paper that appeared online on January 30, 2011 on the subject and a physicist at the University of California, Los Angeles. "It hasn't been clear until now if they got their burst of speed in the middle of the storm, or from some place further away."

Substorms originate opposite the sun on Earth's "night side," at a point about a third of the distance to the moon. At this point in space, energy and particles from the solar wind store up over time. This is also a point where the more orderly field lines near Earth - where they look like two giant ears on either side of the globe, a shape known as a dipole since the lines bow down to touch Earth at the two poles - can distort into long lines and sometimes pull apart and "reconnect."

During reconnection, the stored energy is released in explosions that send particles out in all directions. But reconnection is a magnetic phenomenon and scientists don't know the exact mechanism that creates speeding particles from that phenomenon.

"For thirty years, one of the questions about the magnetic environment around Earth has been, 'how do magnetic fields give rise to moving, energetic particles?'" says NASA scientist Melvyn Goldstein, chief of the Geospace Physics Laboratory at NASA's Goddard Space Flight Center in Greenbelt, Md., and another author on the paper.

"We need to know such things to help plan the next generation of reconnection research instruments such as the Magnetospheric MultiScale mission (MMS) due to launch in 2014. MMS needs to look in the right place and for the correct signatures of particle energization."

In the early 1980s, scientists hypothesized that the quick, high-energy particles might get their speed from rapidly changing magnetic fields. Changing magnetic fields can cause electrons to zoom along a corkscrew path by the betatron effect.

Indeed, electrons moving toward Earth from a substorm will naturally cross a host of changing magnetic fields as those long, stretched field lines far away from Earth relax back to the more familiar dipole field lines closer to Earth, a process called dipolarization. Betatron acceleration causes the particles to gain energy and speed much farther away from the initial reconnection site.

But in the absence of observations that could simultaneously measure data near the reconnection site and closer to Earth, the hypothesis was hard to prove or contradict.

THEMIS, however, was specifically designed to study the formation of substorms. It launched with five spacecraft, which can be spread out over some 44,000 miles - a perfect tool for examining different areas of Earth's magnetic environment at the same time. Near midnight, on February 15, 2008, three of the satellites moving through Earth's magnetic tail, about 36,000 miles from Earth, traveled through a large substorm.

"I looked at the THEMIS data for that substorm," says Ashour-Abdalla, "and saw there was a direct correlation of the increased particle energy at the origin with the region of dipolarization nearer to Earth."

To examine the data, Ashour-Abdalla and a team of researchers from UCLA, Nanchang University in China, NASA Goddard Space Flight Center, and the University of Maryland, Baltimore, used their expertise with computer modeling to simulate the complex dynamics that occur in space.

The team began with spacecraft data from an ESA mission called Cluster that was in the solar wind at the time of the substorm. Using these observations of the solar environment, they modeled large scale electric and magnetic fields in space around Earth. Then they modeled the future fate of the various particles observed.

When the team looked at their models they saw that electrons near the reconnection sites didn't gain much energy. But as they looked closer to Earth, where the THEMIS satellites were located, their model showed particles that had some ten times as much energy - just as THEMIS had in fact observed.

This is consistent with the betatron acceleration model. The electrons gain a small amount of energy from the reconnection and then travel toward Earth, crossing many changing magnetic field lines. These fields produce betatronic acceleration just as Kivelson predicted in the early 1980s, speeding the electrons up substantially.

"This research shows the great science that can be accomplished when modelers, theorists and observationalists join forces," says astrophysicist Larry Kepko, who is a deputy project scientist for the THEMIS mission at Goddard. "THEMIS continues to yield critical insights into the dynamic processes that produce the space weather that affects Earth."

Launched in 2007, THEMIS was NASA's first five-satellite mission launched aboard a single rocket. The unique constellation of satellites provided scientists with data to help resolve the mystery of how Earth's magnetosphere stores and releases energy from the sun by triggering geomagnetic substorms.

Two of the satellites have been renamed ARTEMIS and are in the process of moving to a new orbit around the moon. They are due to reach their final lunar orbit in July 2011. The three remaining THEMIS satellites continue to study substorms.

THEMIS is managed by NASA's Goddard Space Flight Center for the agency's Science Mission Directorate. The Space Sciences Laboratory at the University of California, Berkeley, is responsible for project management, space and ground-based instruments, mission integration, mission operations and science. ATK (formerly Swales Aerospace), Beltsville, Md., built the THEMIS probes. THEMIS is an international project conducted in partnership with Germany, France, Austria, and Canada.

.


Related Links
Goddard Space Flight Center
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Space Weather Model Transitions Into Operation
Washington DC (SPX) Jan 28, 2011
The first large-scale, physics-based space weather prediction model is transitioning from research into operation. Scientists affiliated with the National Science Foundation (NSF) Center for Integrated Space Weather Modeling (CISM) and the National Weather Service reported the news at the annual American Meteorological Society (AMS) meeting in Seattle, Wash. The model will provide forecast ... read more


TIME AND SPACE
NASA's New Lander Prototype Skates Through Integration And Testing

Draper Commits One Million Dollars To Next Giant Leap's Moon Lander

Lunar water may have come from comets - scientists

Moon Has Earth-Like Core

TIME AND SPACE
Rover Conducting Science At Crater Rim

New images of martian moon released

DLR Researchers Simulate The Martian Atmosphere

The Southern Hemisphere Of Phobos, Up Close

TIME AND SPACE
Soyeon's Odyssey

NanoSail-D Flies Free

Major exhibit of NASA material opens in Stockholm

Mumbai's washermen fear rise of the machines

TIME AND SPACE
Slow progress in U.S.-China space efforts

China Builds Theme Park In Spaceport

Tiangong Space Station Plans Progessing

China-Made Satellite Keeps Remote Areas In Venezuela Connected

TIME AND SPACE
Intensive Preparations For ATV Freighter Launch To ISS

Russian Space Freighter Progress M-09M Docks With ISS

Crew Attaches Japanese Resupply Vehicle To ISS

Russian cargo ship sends supplies to space

TIME AND SPACE
Activities At Esrange Space Center 2011

Russia Plans To Build Carrier Rocket For Mars Missions

First Delta IV Heavy Launches From Vandenberg

Beaming Rockets Into Space

TIME AND SPACE
Inclined Orbits Prevail

Inclined Orbits Prevail In Exoplanetary Systems

Planet Affects A Star's Spin

Kepler Mission Discovers Its First Rocky Planet

TIME AND SPACE
Space Agency Investigates Novel Analogue Self-Steered Antennas

Google offers Street View art gallery tours

Murdoch's iPad newspaper launches Wednesday

EA sees bright digital future despite loss




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement