Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
Tiny Laser Light Show Illuminates Quantum Computing
by Staff Writers
Washington DC (SPX) Dec 10, 2010


The researchers saw that the laser pulses also correctly manipulated the quantum properties of each target atom - in this case a line of five rubidium-87 atoms - without disturbing any neighboring atoms, which were separated by just 8.7 microns, about one-tenth the diameter of a human hair.

A new laser-beam steering system that aims and focuses bursts of light onto single atoms for use in quantum computers has been demonstrated by collaborating researchers from Duke University and the University of Wisconsin-Madison.

Described in the journal Applied Physics Letters, published by the American Institute of Physics, the new system is somewhat like the laser-light-show projectors used at rock concerts and planetariums. But it's much smaller, faster, atom-scale accurate and aimed at the future of computing, not entertainment.

In theory, quantum computers will be able to solve very complex and important problems if their basic elements, called qubits, remain in a special "quantum entangled" state for a long enough time for the calculations to be carried out before information is lost to natural fluctuations.

One of several promising approaches to quantum computing uses arrays of individual atoms suspended by electromagnetic forces.

Pulses of laser light manipulate the internal states of the atoms that represent the qubits, to carry out the calculation. However the lasers must also be focused and aimed so accurately that light meant for one atom doesn't affect its neighbors.

The new system did just that. Tiny micromirrors, each only twice the diameter of a human hair, pointed to each target atom in as little as 5 microseconds, which is about 1,000 times faster than sophisticated beam-steering mirrors developed for optical communications switching, not to mention the still slower units used in light shows.

The researchers saw that the laser pulses also correctly manipulated the quantum properties of each target atom - in this case a line of five rubidium-87 atoms - without disturbing any neighboring atoms, which were separated by just 8.7 microns, about one-tenth the diameter of a human hair.

"Our experiments demonstrated the crucial requirement that our micromirror system maintain the laser-beam quality necessary to manipulate the internal states of the individual atoms," said Jungsang Kim, leader of the Duke researchers who designed the micromirror system. The atomic physics experiments were performed in Mark Saffman's group at University of Wisconsin-Madison.

The groups plan to continue their collaboration, with future experiments targeting two-qubit gates, which are expected to be the basic building block of quantum logic, and atoms confined in larger two-dimensional arrays.

The article, "Independent individual addressing of multiple neutral atom qubits with a micromirror-based beam steering system" by Caleb Knoernschild, Xianli Zhang, Larry Isenhower, Alex T. Gill, Felix P. Lu, Mark Saffman, and Jungsang Kim appears in the journal Applied Physics Letters.

.


Related Links
American Institute of Physics
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Rice Physicists Discover Ultrasensitive Microwave Detector
Houston TX (SPX) Dec 10, 2010
Physicists from Rice University and Princeton University have discovered how to use one of the information technology industry's mainstay materials - gallium arsenide semiconductors - as an ultrasensitive microwave detector that could be suitable for next-generation computers. The discovery comes at a time when computer chip engineers are racing both to add nanophotonic devices directly to ... read more


CHIP TECH
Robotic Excavations Could Help Get Helium 3 From Moon To Earth

A Softer Landing on the Moon

Neptec Wins Canadian Space Agency Contract To Develop A New Generation Of Lunar Rovers

Mission to far side of moon proposed

CHIP TECH
The Three Ages Of Mars

Odyssey Orbiter Nears Martian Longevity Record

Drilling For The Future Of Science

Opportunity Imaging Small Craters On Way To Endeavour

CHIP TECH
Discovery Of The Secrets That Enable Plants Near Chernobyl To Shrug Off Radiation

South Africa unveils space agency

NASA sells PCs still containing data

SwRI Researchers Continue Starfighters Suborbital Space Flight Training

CHIP TECH
China Builds Theme Park In Spaceport

Tiangong Space Station Plans Progessing

China-Made Satellite Keeps Remote Areas In Venezuela Connected

Optis Software To Optimize Chinese Satellite Design

CHIP TECH
ISS Tracks Months-Long Voyages Of Ships At Sea

Busy Day For ISS Commander

NASA Seeks Nonprofit To Manage ISS National Lab Research

Expedition 25 Returns Home

CHIP TECH
SpaceX Dragon Does Two Orbits Before Pacific Splashdown

NASA, SpaceX giddy over historic orbit launch

ISRO Hands Two Contracts To Arianespace

US company readies first space capsule launch

CHIP TECH
Astronomers Detect First Carbon-Rich Exoplanet

NASA's Spitzer Reveals First Carbon-Rich Planet

Astronomers Discover New Planet In Planetary System Very Similar To Our Own

Super-Earth Has An Atmosphere, But Is It Steamy Or Gassy

CHIP TECH
Taiwan to approve three billion dollar China plant: report

Tablet computers come of age in 2010 with iPad mania

World's First Microlaser Emitting In 3-D

Sony and Sharp launch e-readers, tablets in Japan




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement