Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. 24/7 Space News .




ENERGY TECH
Tin nanocrystals for the battery of the future
by Fabio Bergamin for ETHZ News
Zurich, Switzerland (SPX) Apr 11, 2013


Monodisperse tin nanodroplets in an electron microscopic image. (Image: Maksym Kovalenko / ETH Zurich.

More powerful batteries could help electric cars achieve a considerably larger range and thus a breakthrough on the market. A new nanomaterial for lithium ion batteries developed in the labs of chemists at ETH Zurich and Empa could come into play here.

They provide power for electric cars, electric bicycles, smartphones and laptops; nowadays, rechargeable lithium ion batteries are the storage media of choice when it comes to supplying a large amount of energy in a small space and light weight. All over the world, scientists are currently researching a new generation of such batteries with an improved performance. Scientists headed by Maksym Kovalenko from the Laboratory of Inorganic Chemistry at ETH Zurich and Empa have now developed a nanomaterial which enables considerably more power to be stored in lithium ion batteries.

The nanomaterial is composed of tiny tin crystals, which are to be deployed at the minus pole of the batteries (anode). When charging the batteries, lithium ions are absorbed at this electrode; while discharging, they are released again (see box). "The more lithium ions the electrodes can absorb and release - the better they can breathe, as it were - the more energy can be stored in a battery," explains Kovalenko.

Uniform crystals
The element tin is ideal for this: every tin atom can absorb at least four lithium ions. However, the challenge is to deal with the volume change of tin electrodes: tin crystal becomes up to three times bigger if it absorbs a lot of lithium ions and shrinks again when it releases them back. The scientists thus resorted to nanotechnology: they produced the tiniest tin nanocrystals and embedded a large number of them in a porous, conductive permeable carbon matrix. Much like how a sponge can suck up water and release it again, an electrode constructed in this way can absorb lithium ions while charging and release them when discharging. If the electrode were made of a compact tin block, this would practically be impossible.

During the development of the nanomaterial, the issue of the ideal size for the nanocrystals arose, which also carries the challenge of producing uniform crystals. "The trick here was to separate the two basic steps in the formation of the crystals - the formation of as small as a crystal nucleus as possible on the one hand and its subsequent growth on the other," explains Kovalenko. By influencing the time and temperature of the growth phase, the scientists were able to control the size of the crystals. "We are the first to produce such small tin crystals with such precision," says the scientist.

Larger cycle stability
Using uniform tin nanocrystals, carbon, and binding agents, the scientists produced different test electrodes for batteries. "This enables twice as much power to be stored compared to conventional electrodes," says Kovalenko. The size of the nanocrystals did not affect the storage capacity during the initial charging and discharging cycle.

After a few charging and discharging cycles, however, differences caused by the crystal size became apparent: batteries with ten-nanometre crystals in the electrodes were able to store considerably more energy than ones with twice the diameter. The scientists assume that the smaller crystals perform better because they can absorb and release lithium ions more effectively. "Ten-nanometre tin crystals thus seem to be just the ticket for lithium ion batteries," says Kovalenko.

As the scientists now know the ideal size for the tin nanocrystals, they would like to turn their attention to the remaining challenges of producing optimum tin electrodes in further research projects. These include the choice of the best possible carbon matrix and binding agent for the electrodes, and the electrodes' ideal microscopic structure.

Moreover, an optimal and stable electrolyte liquid in which the lithium ions can travel back and forth between the two poles in the battery also needs to be selected. Ultimately, the production costs are also an issue, which the researchers are looking to reduce by testing which cost-effective base materials are suitable for electrode production. The aim is to prepare batteries with an increased energy storage capacity and lifespan for the market, in collaboration with a Swiss industrial partner.

How lithium ion batteries work
In lithium ion batteries, the energy is stored in the form of positively charged lithium atoms (ions) that are found at the minus pole in a charged battery. If energy is taken from the battery, negatively charged electrons flow from the minus pole to the plus pole via the external circuit. To balance the charge, positively charged lithium ions also flow from the minus pole to the plus pole.

However, these travel in the electrolyte fluid inside the battery. The process is reversible: lithium ion batteries can be recharged with electricity. In most lithium ion batteries these days, the plus pole is composed of the transition metal oxides cobalt, nickel, and manganese, the minus pole of graphite. In more powerful lithium ion batteries of the next generation, however, elements such as tin or silicon may well be used at the minus pole.

Kravchyk K, Protesescu L, Bodnarchuk MI, Krumeich F, Yarema M, Walter M, Guntlin C, Kovalenko MV: Monodisperse and Inorganically Capped Sn and Sn/SnO2 Nanocrystals for High-Performance Li-Ion Battery Anodes. Journal of the American Chemical Society, 2013, advance online publication, doi: 10.1021/ja312604r

.


Related Links
ETH Zurich
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
Tortuous paths hamper ion transport
Zurich, Switzerland (SPX) Apr 11, 2013
ETH-Zurich researchers use x-ray tomography to screen lithium ion battery electrodes and can reconstruct the microstructure in high resolution. This helps to understand the discharging and charging process better and develop optimised electrodes. Mobile phone batteries that last longer, car batteries that enable you to drive further, storage that accumulates a lot of energy from wind and s ... read more


ENERGY TECH
Characterizing The Lunar Radiation Environment

Russia rekindles Moon exploration program, intends setting up first human outposts there

Pre-existing mineralogy may survive lunar impacts

Lunar cycle determines hunting behaviour of nocturnal gulls

ENERGY TECH
Shaking ExoMars

Astronaut's radiation study will be critical for Mars mission

Remaining Martian Atmosphere Still Dynamic

Registration Opens for NASA Night Rover Energy Challenge

ENERGY TECH
Obama's budget would boost science, health

Underwater for outer space

NASA Celebrates Four Decades of Plucky Pioneer 11

Do Intellectual Property Rights on Existing Technologies Hinder Subsequent Innovation

ENERGY TECH
Shenzhou's Shadow Crew

Shenzhou 10 sent to launch site

China's Next Women Astronauts

Shenzhou 10 - Next Stop: Jiuquan

ENERGY TECH
Spooky action at a distance aboard the ISS

First data released from the Alpha Magnetic Spectrometer

Alpha Magnetic Spectrometer Team Publishes First Findings

New crew takes express ride to space station

ENERGY TECH
Arianespace receives the second Vega for launch from French Guiana

Future Looks Bright for Private US Space Ventures

Europe's next ATV resupply spacecraft enters final preparatio?ns for its Ariane 5 launch

ILS Proton Launches Satmex 8 Satellite for Satmex

ENERGY TECH
Retired Star Found With Planets And Debris Disc

The Great Exoplanet Debate

NASA Selects Explorer Investigations for Formulation

The Great Exoplanet Debate Part Four

ENERGY TECH
Accidental discovery may lead to improved polymers

What's between a slip and a slide?

Light may recast copper as chemical industry 'holy grail'

New camera system creates high-resolution 3-D images from up to a kilometer away




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement