Subscribe free to our newsletters via your
. 24/7 Space News .




CARBON WORLDS
Thin-film diamonds
by Staff Writers
Washington DC (SPX) Jul 09, 2013


File image.

A new method for creating thin films of diamonds, which is described in the journal Applied Physics Letters, produced by AIP Publishing, may allow manufacturers to enhance future electronics.

In industrial and high-tech settings, diamonds are particularly valued for their hardness, optical clarity, smoothness, and resistance to chemicals, radiation and electrical fields.

For electronics applications, researchers "dope" diamonds in order to make them conductive, introducing the semiconductor boron into the diamond manufacturing process.

In the past, it has been a challenge to imbue electronic devices with diamond-like qualities by applying a doped diamond coating, or thin film because the high temperatures required to apply a doped diamond thin film would destroy sensitive electronics, including biosensors, semiconductors, and photonic and optical devices.

In their Applied Physics Letters paper, a team of researchers at Advanced Diamond Technologies, Inc., in Romeoville, Illinois report creating thin films of boron-doped diamond at temperatures low enough (between 460-600C) to coat many of these devices.

While low-temperature deposition of boron-doped diamond thin films is not conceptually new, the research team found no evidence in the literature of such diamond films that had both sufficient quality and manufacturing rates fast enough to be commercially useful.

Tweaking their own normal-temperature boron doping recipe by both lowering the temperature and adjusting the typical ratio of methane to hydrogen gas yielded a high quality film without appreciable change in conductivity or smoothness compared to diamond films made at higher temperatures. The researchers say more data and study is needed to better understand low-temperature opportunities.

Even so, by further optimizing the recipe, the researchers expect to be able to deposit boron-doped diamond thin films at temperatures even lower than 400 C.

"The lower the deposition temperature, the larger number of electronic device applications we can enable," said Hongjun Zeng of Advanced Diamond Technologies, Inc. "That will further expand the product categories for thin, smooth, conductive diamond coatings," Zeng added.

The article, "Low Temperature Boron Doped Diamond" by Hongjun Zeng, Prabhu U. Arumugam, Shabnam Siddiqui, and John A. Carlisle appears in the Journal Applied Physics Letters. Authors of this article are affiliated with Advanced Diamond Technologies, Inc. and Argonne National Laboratory.

.


Related Links
American Institute of Physics
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
Moving Iron in Antarctica
Atlanta GA (SPX) Jun 13, 2013
The seas around Antarctica can, at times, resemble a garden. Large-scale experiments where scientists spray iron into the waters, literally fertilizing phytoplankton, have created huge man-made algal blooms. Such geoengineering experiments produce diatoms, which pull carbon dioxide out of the air. Experts argue that this practice can help offset Earth's rising carbon dioxide levels. Howeve ... read more


CARBON WORLDS
Scientist says Earth may once have been orbited by two moons

Dust hazard for Moon missions: scientists

NASA Seeks Information on Commercial Robotic Lunar Lander Capabilities

Orbiting astronaut controls robot on Earth, testing feasibility of CU-Boulder project on far side of the moon

CARBON WORLDS
NASA's next Mars rover will advance hunt for past life

Opportunity's Improbable Anniversary

Dry run for the 2020 Mars Mission

Opportunity Clocks Up 37 Kilometers Of Roving Mars

CARBON WORLDS
Space seeds could "benefit" traditional Chinese medicines

Kennedy Facilities Key to NASA's Transition

Voyager 1 Explores Final Frontier Of Our Solar Bubble

NASA's Voyager 1 approaches outer limit of solar system

CARBON WORLDS
China's space tracking ship Yuanwang-5 berths at Jakarta for replenishment

China plans to launch Tiangong-2 space lab around 2015

Twilight for Tiangong

China calls for international cooperation in manned space program

CARBON WORLDS
Russia to go ahead with space freighter launch

ISS technology to 'hear' potential leaks

Russian cosmonauts conduct space station tasks in spacewalk

Accelerating ISS Science With Upgraded Payload Operations Integration Center

CARBON WORLDS
Premature launch said likely cause of Russian rocket failure

Europe okays design for next-generation rocket

Kazakh PM orders to form govt commission to assess environmental impact from Proton crash

Analysis of telemetry data of crashed Proton rocket flight completed

CARBON WORLDS
Hubble Telescope reveals variation between hot extrasolar planet atmospheres

UCSB Astronomer Uncovers The Hidden Identity Of An Exoplanet

Gas-Giant Exoplanets Cling Close to Their Parent Stars

Astronomers Detect Three 'Super-Earths' in Nearby Star's Habitable Zone

CARBON WORLDS
Saarland University scientists reveal structure of a supercooled liquid

Laser and optical glass can store data for millions of years

Mainz laser system allows determination of atomic binding energy of the rarest element on earth

After millennia of mining, copper nowhere near 'peak'




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement