Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Thin current sheets in space: where the action is
by Staff Writers
Stockholm, Sweden (SPX) Aug 06, 2012


It has not been possible to measure the wavelength with a single spacecraft, but this can be done with the European Space Agency's four Cluster spacecraft.

Much of the exciting action is space is confined to thin boundaries. The Universe is filled with plasma, a charged gas consisting of ions and electrons. Thin sheets with currents separate large plasma regions in space. Scientists at the Swedish Institute of Space Physics (IRF) have now finally measured the fundamental properties of one of the waves mixing and accelerating plasmas within these sheets.

Around Earth, the processes accelerating electrons which hit the atmosphere and cause beautiful auroras are often initiated in thin current sheets.

Similar processes, auroras and thin current sheets are found around other planets such as Jupiter and Saturn. Plasma regions close to the hot solar surface are separated by thin current sheets, and similar boundaries should also be common around distant stars.

In man-made plasmas, thin boundaries are found in the tokamak plasma employed in nuclear fusion research and space observations may help us understand fusion plasmas.

The solar wind blows plasma at the Earth's magnetic field. This causes the so-called magnetotail, stretching several hundred thousand kilometres downstream from the Earth. There is a thin current sheet separating the northern and southern parts of the tail.

In large parts of space, the plasma is too tenuous for the particles to actually collide. However, since the particles are charged, electric fields caused by some particles will interact with other particles. Often rather specific waves in the electric field interchange energy between the plasma particles. These waves replace ordinary collisions.

The lower hybrid drift waves have been studied for 50 years and are thought to play an important role in these narrow current sheets.

However, due to their relatively short wavelength, it has been impossible to observe their fundamental properties. IRF's scientists have now, for the first time, been able to make direct measurements of the wavelength and velocity of these waves.

It has not been possible to measure the wavelength with a single spacecraft, but this can be done with the European Space Agency's four Cluster spacecraft.

Taking advantage of the short 40 km separation between two of the four spacecraft in the magnetotail during August 2007, the scientists could observe the same wave propagating past first one and then the other spacecraft.

The wavelength could be determined to be about 60 km (comparable to the radius of the electron gyro-motion in the magnetic field) and the velocity to about 1000 km/s (comparable to the ion velocity). The results appeared in the scientific journal Physical Review Letters on 31 July.

"We see small vortices that propagate in this narrow current sheet. They are just big enough so that both of the spacecraft can see them at the same time and be sure it is the same structure," says Cecilia Norgren of the Swedish Institute of Space Physics and a PhD student at Uppsala University.

"The assumptions, used for several decades, have finally been verified by direct observations."

Article in Physical Review Letters, vol. 109, issue 5 (2012):

.


Related Links
Swedish Institute of Space Physics (IRF)
Cluster satellites and IRF's instrument
Cluster at ESA
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





STELLAR CHEMISTRY
X-rays Discovered From Young Supernova Remnant
Huntsville AL (SPX) Aug 02, 2012
Over fifty years ago, a supernova was discovered in M83, a spiral galaxy about 15 million light years from Earth. Astronomers have used NASA's Chandra X-ray Observatory to make the first detection of X-rays emitted by the debris from this explosion. Named SN 1957D because it was the fourth supernova to be discovered in the year of 1957, it is one of only a few located outside of the Milky ... read more


STELLAR CHEMISTRY
US flags still on the moon, except one: NASA

Another Small Step for Mankind

Russia starts building Moon spaceship, eyes Lunar base

Plans to revisit Moon impeded by financial difficulties

STELLAR CHEMISTRY
Mars Science Lab Curiosity Lands On Mars: First Photos

Mars Express marks the spot for Curiosity landing

Opportunity Prepares for Curiosity's Arrival

What to Expect When Curiosity Starts Snapping Pictures

STELLAR CHEMISTRY
Signs Changing Fast for Voyager at Solar System Edge

NASA Goddard's Innovation Lab: Creating a Future

Space tourism seen as billion-dollar biz

NASA to Announce New Agreements for Next Phase of Commercial Crew Development

STELLAR CHEMISTRY
China's Long March-5 carrier rocket engine undergoes testing

China to land first moon probe next year

China launches Third satellite in its global data relay network

Looking Forward to Shenzhou 10

STELLAR CHEMISTRY
Microgravity Science Glovebox Marks Anniversary with 'Hands' on the Future

Russia Launches Space Freighter to Orbital Station

A Fish Friendly Facility for the ISS

Russian cargo ship manages to dock at ISS on second try

STELLAR CHEMISTRY
Ariane 5 performs 50th successful launch in a row

Boeing Delivers 2nd Intelsat 702MP Satellite to Sea Launch Home Port

The Indian GSAT-10 satellite is prepared for Arianespace's fifth Ariane 5 flight of 2012

Arianespace: 50 successful Ariane 5 launches in a row!

STELLAR CHEMISTRY
RIT Leads Development of Next-generation Infrared Detectors

UCF Discovers Exoplanet Neighbor

Can Astronomers Detect Exoplanet Oceans

The Mysterious Case of the Disappearing Dust

STELLAR CHEMISTRY
EU fights to catch Chinese in Greenland rare-earths goldrush

Apple co-founder Wozniak sees trouble in the cloud

You and your smartphone bill

Too cool to follow the law




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement