Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Theory and practice key to optimized broadband, low-loss optical metamaterials
by Staff Writers
Philadelphia PA (SPX) Apr 06, 2013


A photograph of the fabricated free-standing metamaterial filter thin-film mounted on an optical frame. Credit: Penn State.

The union of theory and practice makes broadband, low-loss optical devices practical, which is why two groups of Penn State engineers collaborated to design optical metamaterials that have custom applications that are easily manufactured.

Metamaterials are manufactured materials that derive their unusual properties from structure rather than only composition, and possess exotic properties not usually found in nature. Nanostructured metamaterials appear different for signals of different frequencies. They are dispersive, so that if researchers manipulate this material dispersion, they gain a comprehensive control of the device performance across a band of frequencies.

In the past, to control the optics of metamaterials, researchers used complicated structures including 3-dimensional rings and spirals that are difficult if not impossible to manufacture in large numbers and small sizes at optical wavelengths. From a practical perspective, simple and manufacturable nanostructures are necessary for creating high-performance devices.

"We must design (nanostructures that can be fabricated," said Theresa S. Mayer, Distinguished Professor of Electrical Engineering and co-director of Penn State's nanofabrication laboratory.

Designing materials that can allow a range of wavelengths to pass through while blocking other wavelengths is far more difficult than simply creating something that will transmit a single frequency. Minimizing the time domain distortion of the signal over a range of wavelengths is necessary, and the material also must be low loss.

"We don't want the signal to change as it passes through the device," said Jeremy A. Bossard, postdoctoral fellow in electrical engineering.

The majority of what goes in must come out with little absorption or distortions to the signal waveform due to the metamaterial dispersion.

"What we do is use global optimization approaches to target, over wide bandwidths, the optical performance and nano fabrication constraints required by different design problems," said Douglas H. Werner, John L. and Genevieve H. McCain Chair Professor of Electrical Engineering. "The design methodology coupled with the fabrication approach is critically important."

The design team looked at existing fishnet structured metamaterials and applied nature-inspired optimization techniques based on genetic algorithms. They optimized the dimensions of features such as the size of the fishnet and the thicknesses of the materials.

One of the transformative innovations made by the researchers was the inclusion of nanonotches in the corners of the fishnet holes, creating a pattern that could be tuned to shape the dispersion over large bandwidths. They reported their approach in the online issue of Scientific Reports.

"We introduced nanonotches in the corners of the air holes to give a lot more flexibility to independently control the properties of permittivity and permeability across a broad band," said Werner. "The conventional fishnet doesn't have much flexibility, but is easy to fabricate."

Permittivity measures the ease or difficulty of inducing an electric field in a material, while permeability measures the ease or difficulty of inducing a magnetic field. Theoretically, manipulating permittivity and permeability allows tuning of the metamaterial across a range of wavelengths and creates the desired index of refraction and impedance.

Theory may provide a solution, but can that solution become reality? The fabrication team placed constraints on the design to ensure that the material could be manufactured using electron-beam lithography and reactive ion etching. The initial material was a three-layer sandwich of gold, polyimide and gold on oxidized silicon. When the silicon dioxide mask and the electron beam resist are removed, the researchers were left with an optical metamaterial with the desired properties.

In this case they created a band pass filter, but the same principles can be applied to many optical devices used in optical communications systems, medicine, testing and characterization or even optical beam scanning if the metamaterial is shaped to form a prism.

Another use of this metamaterial could be in conjunction with natural materials that do not have the desired properties for a specific optical application.

"All materials have a natural dispersion," said Mayer. "We might want to coat a natural material in some regions to compensate for the dispersion."

According to Werner, currently the only way to compensate is to find another natural material that would do the job. Only rarely does such a material exist.

Working on this project with Mayer, Werner and Bossard were Zhi Hao Jiang and Lan Lin, both graduate students in electrical engineering, and Seokho Yun, a former electrical engineering postdoctoral fellow.

The National Science Foundation's Materials Research Science and Engineering Center and National Nanotechnology Infrastructure Network supported this work.

.


Related Links
Penn State
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Light may recast copper as chemical industry 'holy grail'
Ann Arbor MI (SPX) Apr 06, 2013
Wouldn't it be convenient if you could reverse the rusting of your car by shining a bright light on it? It turns out that this concept works for undoing oxidation on copper nanoparticles, and it could lead to an environmentally friendly production process for an important industrial chemical, University of Michigan engineers have discovered. "We report a new physical phenomenon that has po ... read more


TECH SPACE
Russia rekindles Moon exploration program, intends setting up first human outposts there

Pre-existing mineralogy may survive lunar impacts

Lunar cycle determines hunting behaviour of nocturnal gulls

Ultraviolet spectrograph observes mercury and hydrogen in GRAIL impact plumes

TECH SPACE
Final MAVEN Instrument Integrated to Spacecraft

Used Parachute on Mars Flaps in the Wind

BusinessCom Networks Connects Mars 2013

SwRI study finds liquid water flowing above and below frozen Alaskan sand dunes, hints of a wetter Mars

TECH SPACE
Do Intellectual Property Rights on Existing Technologies Hinder Subsequent Innovation

Boeing Completes Preliminary Design Review for Connection Between CST-100 Spacecraft and Rocket

NASA Invests in Small Business Innovative Research and Technology Proposals to Enable Future Missions

India doing excellent in space programmes: Sunita Williams

TECH SPACE
Shenzhou's Shadow Crew

Shenzhou 10 sent to launch site

China's Next Women Astronauts

Shenzhou 10 - Next Stop: Jiuquan

TECH SPACE
First data released from the Alpha Magnetic Spectrometer

Alpha Magnetic Spectrometer Team Publishes First Findings

New crew takes express ride to space station

Soyuz Docks At Space Station Four Orbits After Launch

TECH SPACE
Future Looks Bright for Private US Space Ventures

Europe's next ATV resupply spacecraft enters final preparatio?ns for its Ariane 5 launch

ILS Proton Launches Satmex 8 Satellite for Satmex

When quality counts: Arianespace reaffirms its North American market presence

TECH SPACE
NASA Selects Explorer Investigations for Formulation

The Great Exoplanet Debate Part Four

Astronomers Anticipate 100 Billion Earth-Like Planets

The Great Exoplanet Debate

TECH SPACE
Theory and practice key to optimized broadband, low-loss optical metamaterials

CWRU-led scientists build material that mimics squid beak

Watching fluid flow at nanometer scales

Michigan Tech researcher slashes optics laboratory costs




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement