Subscribe free to our newsletters via your
. 24/7 Space News .




SATURN DAILY
The sound in Saturn's rings: RUB-Physicists explain nonlinear dust acoustic waves in dusty plasmas
by Staff Writers
Bochum, Germany (SPX) Oct 17, 2012


illustration only

Dusty plasmas can be found in many places both in space and in the laboratory. Due to their special properties, dust acoustic waves can propagate inside these plasmas like sound waves in air, and can be studied with the naked eye or with standard video cameras.

The RUB physicists Prof. Dr. Dr. h.c. Padma Kant Shukla and Dr. Bengt Eliasson from the Faculty of Physics and Astronomy have published a model with which they describe how large amplitude dust acoustic waves in dusty plasmas behave. The researchers report their new findings in the journal Physical Review E.

Different acoustic phenomena in dusty plasmas
Dusty plasmas are composed of electrons, positive ions, neutral atoms, and dust grains that are negatively or positively charged. Only in plasmas containing electrically charged dust grains, dust sound waves emerge - the so called dust acoustic waves. These waves are supported by the inertia of the massive charged dust particles. The restoring force - causing the particles to oscillate and the wave to propagate - comes from the pressure of the hot electrons and ions.

Recently, several laboratory experiments revealed nonlinear dust acoustic waves with extremely large amplitudes in the form of dust acoustic solitary pulses and shock waves, propagating in the plasma with speeds of a few centimeters per second. Padma Shukla and Bengt Elisasson have developed a unified theory explaining under which circumstances nonlinear dust acoustic shocks as well as dust acoustic solitary pulses occur in dusty plasmas.

Acoustic waves interacting with themselves
Dust acoustic waves with large amplitudes interact among themselves thereby generating new waves with frequencies and wavelengths different from the ones of the original dust acoustic waves.

Due to the generation of harmonics (i.e., waves with frequencies that are a multiple integer of the original frequency) and due to constructive interference between dust acoustic waves of different wavelengths, the waves develop into solitary, spiky pulses, or into shock waves. The solitary pulses arise from a balance between the harmonic generation nonlinearities and the dust acoustic wave dispersion.

Shock waves, on the other hand, form when the dust fluid viscosity dominates over dispersion. This happens at high dust densities when the dust particles are close enough to interact and collide with neighboring dust particles.

Theory successfully explains data from experiments
The new Shukla-Eliasson nonlinear theory and numerical simulations of the dynamics of nonlinear dust acoustic waves successfully explain observations from laboratory experiments of three different groups world-wide, in the USA (Robert Merlino), Taiwan (Lin I), and India (Predhiman Kaw).

These three international groups described the existence of large amplitudes dust acoustic solitary pulses and dust acoustic shocks in their low-temperature dusty plasmas. Applying the new nonlinear dust acoustic wave theory, one can infer the dust fluid viscosity from the width of the dust acoustic shock wave.

"Our results may also be important as a possible mechanism for understanding the cause of dust grain clustering and dust structuring in planets and in star forming regions," suggests Prof. Padma Kant Shukla.

Existence of dusty acoustic waves predicted more than two decades ago
More than two decades ago, Prof. Padma Kant Shukla theoretically predicted the existence of linear and nonlinear dust acoustic waves in dusty plasmas, which since then have been observed in many laboratory experiments. His discovery has transformed the field of plasma physics, and has opened up a new interdisciplinary research field at the crossroad between condensed matter physics and astrophysics.

APS Fellowship for contributions to computational and nonlinear plasma physics
For his seminal contribution to computational and nonlinear plasma physics, Dr. Bengt Eliasson was newly elected as a Fellow of the American Physical Society (APS) in September 2012. An APS Fellowship is a distinct honor signifying recognition by one's professional peers.

The number of Fellows that are annually elected is less than one percent of the current number of APS members. Dr. Bengt Eliasson graduated with a Master degree in Engineering Physics from Uppsala University, Sweden, where he also obtained his PhD degree in Numerical Analysis. Since 2003, he works in the Faculty of Physics and Astronomy at the Ruhr-Universitat Bochum.

The contributions of Dr. Bengt Eliasson to various fields of space and plasma physics range from large-scale simulations of the Earth's ionosphere to new theoretical and numerical models of quantum plasmas at nanoscales.

The results of his research projects have been published in approximately 150 articles in refereed journals and he was invited to give talks at the European Geophysical Union, European Physical Society, American Physical Society, International Congress on Plasma Physics, and other meetings.

P. K. Shukla, B. Eliasson (2012): Nonlinear dynamics of large-amplitude dust acoustic shocks and solitary pulses in dusty plasmas, doi: 10.1103/PhysRevE.86.046402

.


Related Links
Ruhr-University Bochum
Explore The Ring World of Saturn and her moons
Jupiter and its Moons
The million outer planets of a star called Sol
News Flash at Mercury






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SATURN DAILY
What's Baking on Titan?
Pasadena CA (JPL) Oct 17, 2012
Radar images from NASA's Cassini spacecraft reveal some new curiosities on the surface of Saturn's mysterious moon Titan, including a nearly circular feature that resembles a giant hot cross bun and shorelines of ancient seas. The results were presented at the American Astronomical Society's Division of Planetary Sciences conference in Reno, Nev. Steam from baking often causes the top of b ... read more


SATURN DAILY
Giant smashup created the Moon, say scientists

University of Tennessee study confirms solar wind as source for moon water

Russia to launch lunar mission in 2015

Moon water could have solar source: study

SATURN DAILY
NMSU Graduate Student Looks For Indications Of Life On Mars In Possible Trace Methane Gas

Rover's Second Scoop Discarded, Third Scoop Commanded

Robotic Arm Tools Get To Work On Rock Outcrop

Curiosity Preparing for Second Scoop

SATURN DAILY
NASA must reinvest in nanotechnology research, according to new Rice University paper

Austrian space diver no stranger to danger

Baumgartner feat boosts hopes for imperilled astronauts

Austrian breaks sound barrier in record space jump

SATURN DAILY
China launches civilian technology satellites

ChangE-2 Mission To Lagrange L2 Point

Meeting of heads of ESA and China Manned Space Agency

China Spacesat gets 18-million-USD gov't support

SATURN DAILY
Crew Unloads Dragon, Finds Treats

Station Crew Opens Dragon Hatch

NASA and International Partners Approve Year Long ISS Stay

Year on ISS planned ahead of manned Mars mission

SATURN DAILY
AFSPC commander convenes AIB

Proton Lofts Intelsat 23 For Americas, Europe and Africa Markets

India to launch 58 space missions in next 5 years

SpaceX Dragon Successfully Attaches To Space Station

SATURN DAILY
Glitch could end NASA planet search

Ultra-Compact Planetary System Is A Touchstone For Understanding New Planet Population

Nearest Star Has Earth Mass Planet

Distant planet found circling with 4 stars

SATURN DAILY
Physicists crack another piece of the glass puzzle

Worldwide smartphone users top 1 bn: report

New paper reveals fundamental chemistry of plasma/liquid interactions

Google opens window to 'where Internet lives'




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement