Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
The quantum world only partially melts
by Staff Writers
Vienna, Austria (SPX) Sep 07, 2012


On an atom chip (top), clouds of ultracold atoms (red) are created. They are allowed to interfere, creating an ordered matter-wave interference pattern (bottom). Credit: Vienna University of Technology.

Every day we observe systems thermalizing: Ice cubes in a pot of hot water will melt and will never remain stable. The molecules of the ice and the molecules of the water will reach thermal equilibrium, ending up at the same temperature. Well-ordered ice crystals turn into a disordered liquid.

Experiments at the Vienna Center for Quantum Science and Technology (VCQ) at the Vienna University of Technology have shown that in the quantum world the transition to thermal equilibrium is more interesting and more complicated than assumed so far.

Between an ordered initial state and a statistically mixed final state, a so-called "quasi-stationary intermediate state" can emerge. This intermediate state already exhibits some equilibrium like properties, but some of the distinct order of the initial state remains visible for a remarkably long time.

This phenomenon is called "pre-thermalization". Pre-thermalization is predicted to play a major role in many different non-equilibrium processes in quantum physics. It could, for example, help us to understand the state of the early universe.

Ultracold Atom Clouds
"In our experiments we start with a one-dimensional quantum gas of ultracold atoms, a so-called Bose-Einstein condensate, which is then rapidly split into two using an atomchip", Professor Jorg Schmiedmayer (Vienna University of Technology) explains. When the two parts of the condensate are immediately rejoined, they create an ordered matter-wave interference pattern.

"The shape of this interference pattern shows us that the two clouds have not yet forgotten that they originally came from the same atom cloud", says Jorg Schmiedmayer.

Novel State between Order and Equilibrium
After some time, the split atom cloud is expected to tend towards thermal equilibrium. As more time is allowed to pass before the two halves of the system are rejoined, the order seen in the interference patterns decays.

"The astonishing thing about this is that the order does not directly reach a minimum. First, it decays rapidly, but then it remains in an intermediate state - the so-called pre-thermalized state", says Michael Gring (Vienna University of Technology).

Jorg Schmiedmayer's research group has been working on these experiments for several years. "At first, it was not clear how to interpret this phenomenon. The experiments had to be improved and the corresponding theory needed further development", says Schmiedmayer.

In close cooperation with Professor Eugene Demler's theory group at Harvard University the surprising results could now be explained. "The observed disorder in the intermediate state does not depend on the temperature of the initial state. It is introduced into the system by the laws of quantum physics when the atom cloud is split into two", Schmiedmayer says.

Quantum Physics Far From Equilibrium
The transition of systems to thermal equilibrium is important in many fields of quantum physics - after all, a quantum experiment can never be done at exactly zero temperature. Therefore, scientists always have to deal with temperature effects.

Carrying out calculations or storing data in a quantum computer inevitably creates non-equilibrium states, which (much like an ice cube in hot water) tends towards a thermal equilibrium, destroying the quantum state.

Learning from Ultracold Atom Clouds to Understand the Early Universe?

The novel intermediate state could also be interesting for the physics of quark-gluon plasma. Fractions of a second after the Big Bang, all the matter in the universe was in a non-equilibrium state of quark-gluon plasma.

Today, quark-gluon plasma is created in large particle colliders. These plasma experiments showed that certain aspects of the plasma tend towards a thermal equilibrium much faster than one would have assumed.

To explain this, "Pre-Thermalization" was postulated in a theoretical framework developed at Heidelberg University. Scientists speculate that this could be linked to an intermediate state, similar to the one discovered in the ultracold atom clouds at the Vienna University of Technology.

The processes associated with the decay of a quantum system to thermal equilibrium could also tell us more about the relationship between quantum physics and the classical macroscopic world.

"Our atom clouds offer us the possibility to study the fascinating crossover from non-equilibrium states towards thermal equilibrium in detail", says Jorg Schmiedmayer. "That way, we hope to achieve a deeper understanding of non-equilibrium processes, which are omnipresent in nature."

For the experiment, a special kind of atom chip was created at the The Center for Micro- and Nanostructures (ZMNS) at the Vienna University of Technology.

.


Related Links
Vienna University of Technology
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Crews complete first block of North America's most advanced neutrino experiment
Chicago IL (SPX) Sep 07, 2012
Today, technicians in Minnesota will begin to position the first block of a detector that will be part of the largest, most advanced neutrino experiment in North America. The NuMI Off-Axis Neutrino Appearance experiment - NOvA for short - will study the properties of neutrinos, such as their masses, and investigate whether they helped give matter an edge over antimatter after both were created i ... read more


TIME AND SPACE
NASA's GRAIL Moon Twins Begin Extended Mission Science

Flags at half mast across US for Armstrong funeral

Walls of Lunar Crater May Hold Patchy Ice, LRO Radar Finds

Russia's moonshot hope 'not a dream'

TIME AND SPACE
Northrop Grumman Aids Navigation of NASA's Curiosity Mars Rover

Mars's dramatic climate variations are driven by the Sun

NASA Mars Rover Curiosity Begins Arm-Work Phase

NASA's Mars rover parked to test robotic arm

TIME AND SPACE
Mankind's messenger at the final frontier

35 years on, Voyager 'dancing on edge' of outer space

Space-age food served up with seeds of success

Africa eyes joint space agency

TIME AND SPACE
Tiangong Orbit Change Signals Likely Date for Shenzhou 10

China Focus: Timeline for China's space research revealed

China eyes next lunar landing as US scales back

China unveils ambitious space projects

TIME AND SPACE
ISS crew complete space station repair

Crew Wraps Up Preparations for Wednesday's Spacewalk

Building MLM Under Way at Khrunichev

Astronauts Complete Second Expedition 32 Spacewalk

TIME AND SPACE
First-Stage Fuel Loaded; Launch Weather Forecast Improves

NASA launches mission to explore radiation belts

ISRO to score 100 with a cooperative mission Sep 9

NASA Administrator Announces New Commercial Crew And Cargo Milestones

TIME AND SPACE
Birth of a planet

A Hot Potential Habitable Exoplanet around Gliese 163

NASA's Kepler Discovers Multiple Planets Orbiting a Pair of Stars

How Old are the First Planets?

TIME AND SPACE
Amazon takes on iPad with new Kindle Fire tablet

US judge OKs partial settlement in e-book case

Empire-style computers? Frenchman takes PCs to lap of luxury

Google-Microsoft field smartphones to take on iPhone 5




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement