Subscribe free to our newsletters via your
. 24/7 Space News .

The multiferroic sandwich
by Staff Writers
Trieste, Italy (SPX) Sep 08, 2015

This is a simulation of a mutiferroic material. Image courtesy James Rondinelli. For a larger version of this image please go here.

Magnetism and ferroelectricity: two properties which are particularly important for technology. The former is well known in empirical uses: it makes the needle of the compass point towards the North Pole, a magnetic field can align magnetic moments called spin of the electrons that make up the material.

The latter is the electric form of magnetism. Ferroelectric materials maintain electric polarization even after the electrical field that caused it is removed. The two properties are extremely useful, and would be even more so if they coexisted in the same material. At the moment one precludes the other: a material is either ferroelectric or magnetic.

Things may soon change. A new study conducted by SISSA and Northwestern University (Illinois, USA) published in the review Physical Review Letters, proposes a completely new model for creating these "multiferroic" materials.

"Ours is certainly not the first attempt at obtaining a material of this kind, but up to this point there has been little in terms of satisfying results," notes Massimo Capone, SISSA researcher and one of the authors of the study. "Our method is based on a surprising system." Capone and his colleagues' work is a theoretical study which will serve as a guide for developing the material itself.

"Our approach is based on creating a sort of sandwich with layers of Lithium Osmate, a ferroelectric metallic material, alternating with insulating material. Adding insulation causes magnetic properties to emerge from two non-magnetic materials. This arrangement, which we refer to in jargon as heterostructures, slows down electrons in the system, and it is this phenomenon that leads to the emergence of magnetism," explains Gianluca Giovanetti, SISSA/CNR IOM researcher, and one of the authors of the study.

"Our theoretical model shows a clear effect, and furthermore, we show that it is possible to control ferroelectricity with magnetism, another important property," concludes Capone. "The next step will be to test the material itself."

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
International School of Advanced Studies (SISSA)
Space Technology News - Applications and Research

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

New material science research may advance tech tools
Baton Rouge LA (SPX) Sep 02, 2015
Hard, complex materials with many components are used to fabricate some of today's most advanced technology tools. However, little is still known about how the properties of these materials change under specific temperatures, magnetic fields and pressures. Researchers from LSU, Fudan University, the University of Florida and the Collaborative Innovation Center of Advanced Microstructures i ... read more

Russia Gets Ready for New Moon Landing

ASU chosen to lead lunar CubeSat mission

Russia's moon landing plan hindered by financial distress

Research May Solve Lunar Fire Fountain Mystery

ASU instruments help scientists probe ancient Mars atmosphere

Opportunity brushes a rock and conducts in-situ studies

Destination Red Planet: Will Billionaires Fund a Private Mars Colony

One year and counting: Mars isolation experiment begins

In Virginia, TechShop lets 'makers' tinker, innovate

New Russian Spaceship to Be Ready Ahead of Schedule

Annoying? US 'That Kissed the Moon' Has to Pay Russia for Space Flights

French woman wins disability grant for 'gadget allergy'

Progress for Tiangong 2

China rocket parts hit villager's home: police, media

China's "sky eyes" help protect world heritage Angkor Wat

China's space exploration potential has US chasing its own tail

ISS Crew Redocks Soyuz Spacecraft

CALET docks on the International Space Station

Astronaut Andreas to try sub-millimetre precision task on Earth from orbit

Japan's cargo craft delivers supplies, whiskey to space station

SpaceX delays next launch after blast

GSLV Launches India's Latest Communication Satellite GSAT-6

Preparations with both passengers ongoing at Kourou

Proton-M Brings Satellite Into Orbit for First Time Since May Accident

Earth's mineralogy unique in the cosmos

A new model of gas giant planet formation

Planetary pebbles were building blocks for the largest planets

Solar System formation don't mean a thing without that spin

The multiferroic sandwich

Microscopic animals inspire innovative glass research

Team harnesses intense X-ray beam to observe unusual phenomenon

New material science research may advance tech tools

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.