Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
The Party's Over for These Youthful Compact Galaxies
by Staff Writers
Washington DC (SPX) Nov 14, 2014


Two galaxies merge (Panel 1), funneling a large amount of gas into the central region. The gas compresses, sparking a firestorm of star birth (Panel 2). Devoid of its fuel, the galaxy settles into a quiet existence, composed of aging stars (Panel 3). Image courtesy NASA, ESA, A. Field, STScI. To see a larger version of this image please go here.

Researchers using NASA's Hubble Space Telescope and Chandra X-ray Observatory have uncovered young, massive, compact galaxies whose raucous star-making parties are ending early.

The firestorm of star birth has consumed much of the gaseous fuel needed to make future generations of stars, and the powerful stellar winds of the newly born stars have blown away any remaining fuel. Now the party's over for these gas-starved galaxies, and they are on track to possibly becoming so-called "red and dead galaxies," composed only of aging stars.

Astronomers have debated for decades how massive galaxies rapidly evolve from active star-forming machines to star-starved graveyards. Previous observations of these galaxies reveal geysers of gas shooting into space at up to 2 million miles an hour.

Astronomers have suspected that powerful monster black holes lurking at the centers of the galaxies triggered the gaseous outflows and shut down star birth by blowing out any remaining fuel.

Now an analysis of 12 merging galaxies at the end of their star-birthing frenzy is showing that the stars themselves are turning out the lights on their own star-making party, with their own outflows of gaseous fuel. This happened when the universe was a little less than 7 billion years old, half its current age.

"Before our study, the common belief was that stars cannot drive high-velocity outflows in galaxies; only more powerful supermassive black holes can do that," explained Paul Sell of Texas Tech University in Lubbock, lead author of a science paper describing the study's results.

"Through our analysis we found that if you have a compact enough starburst, which Hubble showed was the case with these galaxies, you can actually produce the velocities of the outflows we observed from the stars alone without needing to invoke the black hole."

Team member Christy Tremonti of the University of Wisconsin-Madison first identified the galaxies from the Sloan Digital Sky Survey as galaxies past their peak of starburst activity, and that are ejecting gas at a high velocity.

The sharp visible-light views from Hubble's Wide Field Camera 3 show that the outflows are arising from the most compact galaxies yet found. These galaxies contain as much mass as our Milky Way galaxy, but packed into a much smaller area. The smallest galaxies are about 650 light-years across.

In such small regions of space, these galaxies are forming stars at a rate of a few hundred suns a year. By comparison, the Milky Way makes only about one sun a year. This makes for a rowdy, star-making party that wears itself out quickly, in only a few tens of millions of years.

One reason for the stellar shutdown is that the gas rapidly heats up, becoming too hot to contract under gravity to form new stars. Another possibility is that the star-birthing frenzy blasts out most of the star-making gas via powerful stellar winds.

"The biggest surprise from Hubble was the realization that the newly formed stars were born so close together," said team member Aleks Diamond-Stanic of the University of Wisconsin-Madison, who first suggested the possibility of starburst-driven outflows from these galaxies in a 2012 science paper. "The extreme physical conditions at the centers of these galaxies explain how they can expel gas at millions of miles per hour."

To identify the mechanism triggering the high-velocity outflows, Sell and his team used the Chandra X-ray Observatory and other telescopes to determine whether the galaxies' supermassive black holes, which weigh up to a billion suns, were the powerhouses driving them.

After analyzing all of the observations, the team concluded that the black holes were not the source of the outflows. Rather, it was the powerful stellar winds from the most massive and short-lived stars at the end of their lives, combined with their explosive deaths as supernovae.

Based on their analysis of the Hubble and Chandra data, team members suggest that the "party begins" when two gas-rich galaxies collide, funneling a torrent of cold gas into the merging galaxies' compact center. The large amount of gas compressed into the small space ignites the birth of numerous stars. The energy from the stellar firestorm then blows out the leftover gas, quenching further star formation.

"If you stop the flow of cold gas to form stars, that's it," explained Sell, who conducted the research while a graduate student at the University of Wisconsin-Madison.

"The stars stop forming, and the galaxy rapidly evolves and may eventually become a red, dead elliptical galaxy. These extreme starbursts are quite rare, however, so they may not grow into the typical giant elliptical galaxies seen in our nearby galactic neighborhood. They may, instead, be more compact."

The team's results were published in the July 11 edition of the Monthly Notices of the Royal Astronomical Society.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
More information about Hubble
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Research reveals the real cause of death for some starburst galaxies
Lawrence KS (SPX) Nov 14, 2014
Like hedonistic rock stars that live by the "better to burn out than to fade away" credo, certain galaxies flame out in a blaze of glory. Astronomers have struggled to grasp why these young "starburst" galaxies - ones that are very rapidly forming new stars from cold molecular hydrogen gas up to 100 times faster than our own Milky Way - would shut down their prodigious star formation to join a c ... read more


STELLAR CHEMISTRY
After Mars, India space chief aims for the moon

China examines the three stages of lunar test run

China gears up for lunar mission after round-trip success

NASA's LRO Spacecraft Captures Images of LADEE's Impact Crater

STELLAR CHEMISTRY
Warmth and flowing water on early Mars were episodic

Next NASA Mars Mission Reaches Milestone

Mars, too, has macroweather

Comet lander 'working well', but may be on slope

STELLAR CHEMISTRY
Tencent looks to the final travel frontier

ESA Commissions Airbus As contractor For Orion Service Module

Study Investigates How Men and Women Adapt Differently to Spaceflight

S3 concludes first phase of drop-tests

STELLAR CHEMISTRY
China publishes Earth, Moon photos taken by lunar orbiter

China plans to launch about 120 applied satellites

Mars probe to debut at upcoming air show

China to build global quantum communication network in 2030

STELLAR CHEMISTRY
Europe's 3D printer set for ISS

NASA Commercial Crew Partners Continue System Advancements

Astronaut turned Twitter star, Reid Wiseman, back on Earth

Three-man multinational space crew returns to Earth

STELLAR CHEMISTRY
Time-lapse video shows Orion's move to Cape Canaveral launch pad

Soyuz Installed at Baikonur, Expected to Launch Wednesday

SpaceX chief Musk confirms Internet satellite plan

Orbital recommits to NASA Commercial program and Antares

STELLAR CHEMISTRY
Follow the Dust to Find Planets

NASA's TESS mission cleared for next development phase

ADS primes ESA's CHEOPS to detect and classify exoplanets

NASA's TESS Mission Cleared for Next Development Phase

STELLAR CHEMISTRY
Shaking the topological cocktail of success

Drexel Engineers Improve Strength, Flexibility of Atom-Thick Films

Creating Bright X-Ray Pulses in the Laser Lab

New Process Isolates Promising Material




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.