Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
The Most Distant and Ancient Supernovae in the Young Universe
by Staff Writers
Mauna Kea HI (SPX) Oct 05, 2011


The type Ia supernova in the inset above, one of 150 in the full sample, exploded some 10 billion years ago and is one of the oldest and farthest type Ia supernovae observed to date. Except for a handful of stars, all of the objects in the above image are galaxies.

A team of Japanese, Israeli, and U.S. astronomers used the Subaru Telescope to assemble the largest sample ever found of the most distant exploding stars called supernovae, which emitted their light about ten billion years ago, long before the Earth was formed. The researchers used this sample of ancient supernovae to determine how frequently such explosions of stars occurred in the young universe.

Supernovae have substantial importance in astrophysics. They are nature's element factories: essentially all of the elements in the periodic table that are heavier than oxygen were formed through nuclear reactions immediately preceding and during these colossal explosions. The explosions fling these elements into interstellar space, where they serve as raw materials for new generations of stars and planets.

Thus, the atoms in our bodies, like the calcium atoms in our bones or the iron atoms in our blood, were created in supernovae. By tracking the frequency and types of supernova explosions back through cosmic time, astronomers can reconstruct the universe's history of element creation, from the plain mix of hydrogen and helium that existed for the first billion years or so after the Big Bang, up to the elemental richness we see today.

However, looking back in time requires looking out to great distances, which means that even these bright explosions are exceedingly faint and difficult to spot. To overcome this obstacle, the team took advantage of a combination of the Subaru Telescope's assets: the huge light-collecting power of its large 8.2 meter primary mirror; the sharpness of its images, and the wide field of view of its prime focus camera (Suprime-Cam).

On four separate occasions, they pointed the telescope toward one single field called the Subaru Deep Field, which spans an area of the sky similar to that covered by the full moon and had previously been studied in great detail by Subaru scientists. By "staring" with the telescope at this single field, they let the faint light from the most distant galaxies and supernovae accumulate over several nights at a time, thus forming a very long and deep exposure of the field.

Each of the four observations caught about 40 supernovae in the act of exploding among the 150,000 galaxies in the field. Altogether, the team discovered 150 explosions, including a dozen that rank among the most distant and ancient ever seen.

The team's analysis of the data showed that supernovae of the so-called "thermonuclear" type were exploding about five times more frequently in the young universe, about ten billion years ago, than they do today. Thermonuclear supernovae, often called Type-Ia supernovae, are one of the main sources of the element iron in the universe.

Equally important, these explosions have served as cosmic distance markers for astronomers. Over the past decade, they have revealed that the expansion of the universe, in which all galaxies are receding from each other, is actually accelerating under the influence of mysterious dark energy.

However, the nature of the thermonuclear supernovae themselves is poorly understood, and there has been fierce debate about the identity of the pre-explosion stars or stellar systems. By revealing the range of the ages of the stars that explode in this way, the team's new findings provide some important clues to solving this mystery.

The results correspond closely to a scenario in which a thermonuclear supernovae is the outcome of the merger of a pair of compact stellar remnants called white dwarfs. Future observations with the next-generation Subaru imaging camera, Hyper Suprime-Cam, will permit the discovery of even larger and more distant supernova samples, and allow for further testing of this conclusion.

The results are described in a paper by Graur et al. in the October 2011 issue of the Monthly Notices of the Royal Astronomical Society. The title is "Supernovae in the Subaru Deep Field: the rate and delay-time distribution of type Ia supernovae out to redshift 2".

Team members
O. Graur (Tel-Aviv University,Israel)

D. Poznanski (LBNL, UC Berkeley, USA; Tel-Aviv University, Israel)

D. Maoz (Tel-Aviv University,Israel)

N. Yasuda (University of Tokyo, Japan)

T. Totani (Kyoto University, Japan)

M. Fukugita (University of Tokyo, Japan)

A. V. Filippenko (UC Berkeley, USA)

R. J. Foley (Harvard/Smithsonian Center for Astrophysics, USA)

J. M. Silverman (UC Berkeley, USA)

A. Gal-Yam (Weizmann Institute of Science, Israel)

A. Horesh (Tel-Aviv University, Israel; Caltech, USA)

B. T. Jannuzi (National Optical Astronomy Observatory, USA)

.


Related Links
Subaru Telescope
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
In Chile desert, huge telescope begins galaxy probe
Llano Chajnantor, Chile (AFP) Oct 3, 2011
A powerful telescope affording a view of the universe unmatched by most ground-based observatories gazed onto distant galaxies for the first time Monday from deep in Chile's Atacama desert. The Atacama Large Millimeter/submillimeter Array, a joint project between Canada, Chile, the European Union, Japan, Taiwan and the United States, officially opened for astronomers after a decade of planni ... read more


STELLAR CHEMISTRY
NASA Invites Students to Name Moon-Bound Spacecraft

NASA Partners Uncover New Hypothesis On Crater Debris

China to launch moon-landing probe around 2013

United Launch Alliance Launches GRAIL Spacecrafts To Moon

STELLAR CHEMISTRY
NASA Mars Rovers Win Popular Mechanics 'Breakthrough' Award

The Strange Attraction of Gale Crater

Opportunity Studies Rock Interior

Mars Express finds water supersaturation in the Martian atmosphere

STELLAR CHEMISTRY
U.S. sues astronaut over space camera

AAS Society Members Win 2011 Nobel Prize in Physics

NASA's Next Generation Spacecraft Brought to Life by a New Generation of Students

NASA Selects Science Investigations For Concept Studies

STELLAR CHEMISTRY
Takeoff For Tiangong

Snafu as China space launch set to US patriotic song

Civilians given chance to reach for the stars

Tiangong-1 Forms Cornerstone Of China's Space Odyssey

STELLAR CHEMISTRY
DLR ROKVISS robotic arm returns from space

Commercial space deliveries 'within months': NASA

Private US capsule not to dock with ISS

Crew safely returns to Earth after crash

STELLAR CHEMISTRY
Russia launches US telecoms satellite into orbit

First Vega starts journey to Europe's Spaceport

Arianespace to launch Mexican satellite Mexsat 3

Russia's Soyuz-2.1B carrier rocket orbits Glonass satellite

STELLAR CHEMISTRY
Heavy Metal Stars Produce Earth-Like Planets

Doubts Over Fomalhaut b

Earth's Trapped Gas Fed the Early Atmosphere

From the Comfort of Home, Web Users May Have Found New Planets

STELLAR CHEMISTRY
SSTL redefines the cost of radar imaging with NovaSAR-S

EDRS: an independent data-relay system for Europe becoming reality

Samsung seeks sales ban on new iPhone

On sale now in China: the 'iPhone 5'




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement