Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. 24/7 Space News .




EARLY EARTH
The Earth's center is 1,000 degrees hotter than previously thought
by Staff Writers
Grenoble, France (SPX) Apr 29, 2013


This artist's view depicts the different layers of the Earth and their representative temperatures: crust, upper and lower mantle (brown to red), liquid outer core (orange) and solid inner core (yellow). The pressure at the border between the liquid and the solid core (highlighted) is 3.3 million atmospheres, with a temperature now confirmed as 6000 degrees Celsius. Credit: ESRF.

Scientists have determined the temperature near the Earth's centre to be 6000 degrees Celsius, 1000 degrees hotter than in a previous experiment run 20 years ago.

These measurements confirm geophysical models that the temperature difference between the solid core and the mantle above, must be at least 1500 degrees to explain why the Earth has a magnetic field. The scientists were even able to establish why the earlier experiment had produced a lower temperature figure. The results are published on 26 April 2013 in Science.

The research team was led by Agnes Dewaele from the French national technological research organization CEA, alongside members of the French National Center for Scientific Research CNRS and the European Synchrotron Radiation Facility ESRF in Grenoble (France).

The Earth's core consists mainly of a sphere of liquid iron at temperatures above 4000 degrees and pressures of more than 1.3 million atmospheres. Under these conditions, iron is as liquid as the water in the oceans. It is only at the very centre of the Earth, where pressure and temperature rise even higher, that the liquid iron solidifies.

Analysis of earthquake-triggered seismic waves passing through the Earth, tells us the thickness of the solid and liquid cores, and even how the pressure in the Earth increases with depth.

However these waves do not provide information on temperature, which has an important influence on the movement of material within the liquid core and the solid mantle above.

Indeed the temperature difference between the mantle and the core is the main driver of large-scale thermal movements, which together with the Earth's rotation, act like a dynamo generating the Earth's magnetic field. The temperature profile through the Earth's interior also underpins geophysical models that explain the creation and intense activity of hot-spot volcanoes like the Hawaiian Islands or La Reunion.

To generate an accurate picture of the temperature profile within the Earth's centre, scientists can look at the melting point of iron at different pressures in the laboratory, using a diamond anvil cell to compress speck-sized samples to pressures of several million atmospheres, and powerful laser beams to heat them to 4000 or even 5000 degrees Celsius.

"In practice, many experimental challenges have to be met", explains Agnes Dewaele from CEA, "as the iron sample has to be insulated thermally and also must not be allowed to chemically react with its environment. Even if a sample reaches the extreme temperatures and pressures at the centre of the Earth, it will only do so for a matter of seconds. In this short timeframe it is extremely difficult to determine whether it has started to melt or is still solid".

This is where X-rays come into play. "We have developed a new technique where an intense beam of X-rays from the synchrotron can probe a sample and deduce whether it is solid, liquid or partially molten within as little as a second, using a process known diffraction", says Mohamed Mezouar from the ESRF, "and this is short enough to keep temperature and pressure constant, and at the same time avoid any chemical reactions".

The scientists determined experimentally the melting point of iron up to 4800 degrees Celsius and 2.2 million atmospheres pressure, and then used an extrapolation method to determine that at 3.3 million atmospheres, the pressure at the border between liquid and solid core, the temperature would be 6000 +/- 500 degrees. This extrapolated value could slightly change if iron undergoes an unknown phase transition between the measured and the extrapolated values.

When the scientists scanned across the area of pressures and temperatures, they observed why Reinhard Boehler, then at the MPI for Chemistry in Mainz (Germany), had in 1993 published values about 1000 degrees lower.

Starting at 2400 degrees, recrystallization effects appear on the surface of the iron samples, leading to dynamic changes of the solid iron's crystalline structure.

The experiment twenty years ago used an optical technique to determine whether the samples were solid or molten, and it is highly probable that the observation of recrystallization at the surface was interpreted as melting.

"We are of course very satisfied that our experiment validated today's best theories on heat transfer from the Earth's core and the generation of the Earth's magnetic field. I am hopeful that in the not-so-distant future, we can reproduce in our laboratories, and investigate with synchrotron X-rays, every state of matter inside the Earth," concludes Agnes Dewaele.

S. Anzellini et al.: Melting of Iron at earth's Inner Core Boundary based on Fast X-ray Diffraction, Science 26 April 2013; R. Boehler, Temperatures in the Earth's core from melting-point measurements of iron at high static pressures, Nature 363, 534 - 536 (10 June 1993); doi:10.1038/363534a0

.


Related Links
European Synchrotron Radiation Facility
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





EARLY EARTH
Unique Chemistry Reveals Eruption of Ancient Materials Once at Earth's Surface
San Diego CA (SPX) Apr 29, 2013
An international team of researchers, including Scripps Institution of Oceanography, UC San Diego, geochemist James Day, has found new evidence that material contained in oceanic lava flows originated in Earth's ancient Archean crust. These findings support the theory that much of the Earth's original crust has been recycled by the process of subduction, helping to explain how the Earth ha ... read more


EARLY EARTH
Characterizing The Lunar Radiation Environment

Russia rekindles Moon exploration program, intends setting up first human outposts there

Pre-existing mineralogy may survive lunar impacts

Lunar cycle determines hunting behaviour of nocturnal gulls

EARLY EARTH
Dutch reality show seeks one-way astronauts for Mars

Accurate pointing by Curiosity

NASA Mars Orbiter Images May Show 1971 Soviet Lander

Opportunity is in position for solar conjunction at 'Cape York' on the rim of Endeavour Crater

EARLY EARTH
NASA Invites the Public to Fly Along with Voyager

Google's Brin keeps spotlight on future technologies

Mysterious water on Jupiter came from comet smash

What makes a good astronaut?

EARLY EARTH
Yuanwang III, VI depart for space-tracking missions

Shenzhou's Shadow Crew

Shenzhou 10 sent to launch site

China's Next Women Astronauts

EARLY EARTH
Cargo spaceship docks with ISS despite antenna mishap

ISS Communications Test Bed Checks Out; Experiments Begin

Spacewalkers Deploy Plasma Experiment, Install Navigational Aid

The New and Improved ISS Facilities Brochure

EARLY EARTH
On the record with... Stephane Israel, Arianespace Chairman and CEO

Vega's three-satellite payload is integrated and ready for launch

NASA Seeks Innovative Suborbital Flight Technology Proposals

Stephane Israel named Chairman and CEO of Arianespace

EARLY EARTH
Astronomer studies far-off worlds through 'characterization by proxy'

Mysterious Hot Spots Observed In A Cool Red Supergiant

Orbital Selected By NASA for TESS Astrophysics Satellite

Star-and Planet-Forming Regions May Hold Key to Life's Chirality

EARLY EARTH
Vaterite: Crystal within a crystal helps resolve an old puzzle

Space debris problem now urgent - scientists

Nothing Bugs These NASA Aeronautical Researchers

US eases export rules on aerospace parts




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement