Subscribe free to our newsletters via your
. 24/7 Space News .

The Astrobiology Analytical Lab at Goddard
by Becky Strauss for Goddard Space Flight Center
Greenbelt, MD (SPX) Aug 07, 2012

A liquid chromatograph mass spectrometer in NASA Goddard's Astrobiology Analytical Laboratory analyzes carbonaceous meteorite extracts. (Credit: NASA Goddard/Becky Strauss)

When Daniel Glavin isn't designing a chemistry experiment to run from millions of miles away, he's a researcher in the Astrobiology Analytical Laboratory at NASA's Goddard Space Flight Center in Greenbelt, Maryland, where scientists are working to solve two of the biggest mysteries facing humanity: How did we get here? And are we alone? The answers may lie in carbonaceous meteorites.

Defined according to their organic matter (carbon) content, carbonaceous chondrites make up about four percent of all meteorite falls on Earth.

These carbon-rich meteorites are more likely than their carbon-poor counterparts to contain the chemical predecessors of life, such as amino acids, sugars, and nucleobases, the raw material for DNA and RNA.

"Yes, it's not life yet-these are the precursors for life-but the idea that our building blocks are forming just in space, without any influence from biology, is cool," Glavin says.

In the hunt for organic material, the Astrobiology Analytical Laboratory focuses on meteorites from carbon-rich asteroids.

Using less than a gram of meteorite powder (about three one-hundredths of an ounce), researchers run a series of experiments to tease out a sample's organic components, identifying signature amino acids and analyzing their abundance and chirality, or handedness, for indications of biological influence.

Scientists hope to apply the same detection techniques they use on meteorites in the lab to search for carbon on the surface of Mars. With the help of its powerful onboard chemistry lab, the Sample Analysis at Mars (SAM) suite, the Curiosity Mars rover will kick off the latest installment of our search for signs of life on other planets.

Astrobiology on Mars
If the assortment of meteorites found on Earth is any indication, carbon-rich meteorites must have impacted the Martian surface at some point during its 4.5 billion-year history-but scientists haven't found them yet.

"The truth of the matter is we've never detected a carbonaceous meteorite on Mars," Glavin says.

Without a protective atmosphere, harsh Martian surface weather, including violent windstorms that carry abrasive dust, can break apart rocky material over millions of years.

Carbonaceous meteorites may have been worn away faster than their dense iron siblings, which previous missions have detected. "It's possible that if there is any carbonaceous material from meteorites, it's just part of the soil," Glavin says.

Scientists can use erosion rates to estimate expected percentages of meteorite material in the Martian soil, but direct measurement has been impossible-until SAM.

The SAM suite is essentially a compressed version of the Astrobiology Analytical Lab, about the size of a microwave.

Equipped with a miniature wet chemistry toolkit, SAM will follow the same steps scientists take to analyze organic material on Earth, heating samples to free up amino acids and other organic compounds and passing the resulting vapor through 90 feet (30 meters) of narrow tubing to separate out its volatile components.

Every test is a multi-step process; a team of scientists here on Earth must evaluate each experimental protocol before SAM carries it out on Mars. By conducting a first run in the Astrobiology Analytical Lab, scientists can remotely calibrate SAM, checking its results against the outcomes of analogous experiments on Earth.

"We're trying to understand what the capabilities and limitations are for SAM, and how the information obtained would compare to the same laboratory-based measurements of the sample if we were able to return it from Mars-what additional information would we learn?" Glavin says.

The Future of Astrobiology
With an impressive list of capabilities, SAM is the next best thing to studying a sample in the lab itself. However, even SAM has limitations. For astrobiologists and other scientists to acquire the best possible results, they must bring samples back to Earth.

"This is the next step for trying to answer this question about life on Mars, short of sending humans there," Glavin says.

If extraterrestrial material could be delivered directly from a planet or asteroid to the lab, issues related to terrestrial contamination and alteration of the samples from heating during atmospheric entry would be greatly reduced.

Sample return would also resolve the question of sourcing. Without direct collection, it can be difficult to track down a meteorite's parent body.

"A lot of these asteroids hit each other and deliver [material], so they're kind of a conglomerate of different types of asteroids," Glavin says.

"They're puzzles that we try to figure out. It's not easy."

The astrobiology team is looking forward to the launch of OSIRIS-REx, which will travel to a near-Earth carbonaceous asteroid and, for the first time, collect samples to bring back to Earth.

In the meantime, hopes are high (and fingers are crossed) that SAM will send home exciting data within a few months of the Curiosity landing. Even if organic carbon remains elusive, the mission will have far-reaching implications for our understanding of Mars.

"Mars is a very complicated place," Glavin says. "Every time we go there, we learn something new that changes the way we think about the Red Planet."


Related Links
Goddard Space Flight Center
Life Beyond Earth
Lands Beyond Beyond - extra solar planets - news and science

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Newfound gene may help bacteria survive in extreme environments
Cambridge MA (SPX) Jul 31, 2012
In the days following the 2010 Deepwater Horizon oil spill, methane-eating bacteria bloomed in the Gulf of Mexico, feasting on the methane that gushed, along with oil, from the damaged well. The sudden influx of microbes was a scientific curiosity: Prior to the oil spill, scientists had observed relatively few signs of methane-eating microbes in the area. Now researchers at MIT have discov ... read more

Roscosmos Announces Tender for Moon Rocket Design

US flags still on the moon, except one: NASA

Another Small Step for Mankind

Russia starts building Moon spaceship, eyes Lunar base

NASA's Mars rover sends back stunning pictures

Joy after seven minutes of terror at NASA lab

NASA lands rover on Mars to seek signs of life

Next on Mars: 400 scientists on an alien road trip

JPL Infographics Site Wants You and Your Creativity

Signs Changing Fast for Voyager at Solar System Edge

NASA Goddard's Innovation Lab: Creating a Future

Space tourism seen as billion-dollar biz

China's Long March-5 carrier rocket engine undergoes testing

China to land first moon probe next year

China launches Third satellite in its global data relay network

Looking Forward to Shenzhou 10

Microgravity Science Glovebox Marks Anniversary with 'Hands' on the Future

Russia Launches Space Freighter to Orbital Station

A Fish Friendly Facility for the ISS

Russian cargo ship manages to dock at ISS on second try

Ariane 5 performs 50th successful launch in a row

Boeing Delivers 2nd Intelsat 702MP Satellite to Sea Launch Home Port

The Indian GSAT-10 satellite is prepared for Arianespace's fifth Ariane 5 flight of 2012

Arianespace: 50 successful Ariane 5 launches in a row!

RIT Leads Development of Next-generation Infrared Detectors

UCF Discovers Exoplanet Neighbor

Can Astronomers Detect Exoplanet Oceans

The Mysterious Case of the Disappearing Dust

Samsung exec 'very offended' by Apple rip-off claim

Wrinkled surfaces could have widespread applications

Writing graphics software gets much easier

Christine Arlt goes from dwarf research to Institute management

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement