Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
Terahertz pulse increases electron density 1,000-fold
by Staff Writers
Kyoto, Japan (SPX) Dec 27, 2011


A picosecond terahertz pulse causes an avalanche of excitons to burst forth from semiconductor GaAs. Credit: Courtesy Tanaka Lab, Kyoto University iCeMS.

Researchers at Kyoto University have announced a breakthrough with broad implications for semiconductor-based devices. The findings, announced in the December 20 issue of the journal Nature Communications, may lead to the development of ultra-high-speed transistors and high-efficiency photovoltaic cells.

Working with standard semiconductor material (gallium arsenide, GaAs), the team observed that exposing the sample to a terahertz (1,000 gigahertz) range electric field pulse caused an avalanche of electron-hole pairs (excitons) to burst forth.

This single-cycle pulse, lasting merely a picosecond (10^-12 s), resulted in a 1,000-fold increase in exciton density compared with the initial state of the sample.

"The terahertz pulse exposes the sample to an intense 1 MV/cm^2 electric field," explains Hideki Hirori, team leader and Assistant Professor at Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS).

"The resulting exciton avalanche can be confirmed by a bright, near-infrared luminescence, demonstrating a three-order of magnitude increase in the number of carriers."

Research in Kyoto using terahertz waves is led by Professor Koichiro Tanaka, whose lab at the iCeMS pursues numerous applications including the development of new biological imaging technologies.

"Since terahertz waves are sensitive to water, our goal is to create a microscope that will allow us to look inside living cells in real time," says Prof. Tanaka.

"These just-released results using semiconductors are an entirely different field of science, but they demonstrate the rich potential that lies in the study of terahertz waves."

The article, "Extraordinary carrier multiplication gated by a picosecond electric field pulse" by H. Hirori, K. Shinokita, M. Shirai, S. Tani, Y. Kadoya, and K. Tanaka was published online in the December 20, 2011 issue of Nature Communications.

.


Related Links
Institute for Integrated Cell-Material Sciences, Kyoto University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Self-healing electronics could work longer and reduce waste
Champaign IL (SPX) Dec 23, 2011
When one tiny circuit within an integrated chip cracks or fails, the whole chip - or even the whole device - is a loss. But what if it could fix itself, and fix itself so fast that the user never knew there was a problem? A team of University of Illinois engineers has developed a self-healing system that restores electrical conductivity to a cracked circuit in less time than it takes to bl ... read more


CHIP TECH
Peres promotes Israeli moon probe

Hundreds of NASA's moon rocks missing: audit

Schafer Corp Signs Licensing Agreement with MoonDust Technologies

Russia wants to focus on Moon if Mars mission fails

CHIP TECH
Meteorite Shock Waves Trigger Dust Avalanches on Mars

Opportunity at One of its Two Winter Spots

Scientists find microbes in lava tube living in conditions like those on Mars

MARSIS Completes Measurement Campaign Over Martian North Pole

CHIP TECH
NASA Conducts Orion Parachute Testing for Orbital Test Flight

Astrophysicist John Grunsfeld to Head NASA Science Directorate

A Brighter Future for Spaceflight

Goddard Scientists Selected as Participating Scientists in Mars Lab and Cassini Missions

CHIP TECH
Tiangong-1 orbiter starts planned cabin checks against toxic gas

China celebrates success of space docking mission

Two and a Half Men for Shenzhou

China honors its 'father' of space efforts

CHIP TECH
New crew arrives at international space station

NASA 'Smart SPHERES' Tested on ISS

Russia sends multinational crew to ISS

As Soyuz Rolls ISS Crew Work On Science

CHIP TECH
Launch of Russian Proton-M carrier rocket postponed

Russian satellite crashes into Siberia after launch

Next ESA Astronaut Ready For Launch As Soyuz Rolls Out

Acra Control Proven in Low Earth Orbit

CHIP TECH
New Exo planets raise questions about the evolution of stars

Astronomers discover deep-fried planets

Two new Earth-sized exoplanets discovered

NASA Discovers First Earth-Size Planets Beyond Our Solar System

CHIP TECH
$25 computer nears production

China seeks steady rare earths exports in 2012

Siberian man miraculously unharmed as satellite piece crashes through roof

HokieSpeed, a new powerful supercomputer for the masses




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement