Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Survey gives clues to origin of Type Ia supernovae
by Robert Sanders for Berkeley News
Berkeley CA (SPX) Oct 12, 2011


This three-color composite of a portion of the Subaru Deep Field shows mostly galaxies with a few stars. The inset shows one of the 10 most distant and ancient Type Ia supernovae discovered by the American, Israeli and Japanese team.

The largest survey to date of distant exploding stars is giving astronomers new clues to what's behind the Type Ia supernovae they use to measure distances across the cosmos.

These stellar explosions helped astronomers conclude more than a decade ago that dark energy is accelerating the expansion of the universe, and has earned the discoverers - including UC Berkeley physicist Saul Perlmutter - the 2011 Nobel Prize in Physics. But what caused them was a mystery. Many astronomers thought white dwarf stars were pulling matter from their normal stellar companions and growing so fat they exploded.

But the new study by American, Israeli and Japanese astronomers instead suggests that many, if not most, of the Type Ia supernovae result when two white dwarf stars merge and annihilate in a thermonuclear explosion.

"The nature of these events themselves is poorly understood, and there is a fierce debate about how these explosions ignite," said Dovi Poznanski, one of the main authors of the paper and a post-doctoral fellow at the University of California, Berkeley, and Lawrence Berkeley National Laboratory.

"The main goal of this survey was to measure the statistics of a large population of supernovae at a very early time, to get a look at the possible star systems," he said. "Two white dwarfs merging can explain well what we are seeing."

Poznanski, Tel-Aviv University graduate student Or Graur and their colleagues will report their findings in the October 2011 issue of the journal Monthly Notices of the Royal Astronomical Society (MNRAS).

The results do not place in jeopardy the conclusion that the expansion of the universe is accelerating, said coauthor Alex Filippenko, UC Berkeley professor of astronomy.

"As long as Type Ias explode in the same way, no matter what their origin, their intrinsic brightnesses should be the same, and the distance calibrations would remain unchanged," he said.

Evidence that Type Ia supernovae are caused by the merger of two white dwarfs - the so-called double-degenerate theory - has been accumulating over the past two years, based on surveys by the Hubble Space Telescope and others.

"The tide is definitely turning, and these are the best data yet to support the double-degenerate theory," Filippenko said.

One white dwarf or two?

White dwarfs are dense, compact stars formed from normal stars like the sun once they exhaust their nuclear fuel and compress under their own weight.

The new, largest-ever survey using the Subaru Telescope in Hawaii accumulated a sample of 150 distant supernovas that exploded between 5 and 10 billion years ago.

The finding, when combined with previous surveys of closer Type Ia supernovae, suggests that astronomers surveying Type Ia supernovae may be seeing a mixture of single- and double-degenerates.

"There are no good answers yet, and it could be that we are seeing a mix of the two types of explosions," Poznanski said.

Though the two-faced nature of Type Ia supernovae still allows them to be used as calibratable candles to measure cosmic distance, Filippenko said, it might affect attempts to "quantify in detail the history of the expansion rate of the universe. The subtle differences between single- and double-degenerate models could introduce a systematic error that we'll need to account for."

The team also found that Type Ia supernovae were five times more common 5-10 billion years ago than today, probably because there were more young stars back then rapidly evolving into white dwarfs. Moreover, this study allowed the team to more accurately determine the production of iron over cosmic time, as Type Ia supernovae create iron through nuclear reactions when they explode.

To find their distant sample, the international team of astronomers exploited the enormous light collecting power of the Subaru Telescope's Suprime-Camera on four separate occasions. They pointed the ground-based telescope, located atop Hawaii's Mauna Kea volcano, toward a single field in the sky that was approximately the size of the full moon. Each run yielded about 40 supernovae among 150,000 galaxies.

Then they used the Keck telescopes on Mauna Kea to observe the galaxies where these explosions occurred. These observations were crucial for pinpointing the distance of these events.

Future observations with the Hyper Suprime-Camera, which will be mounted on the Subaru Telescope, will be able to discover even larger and more distant supernova samples to test this conclusion.

Read the paper here.

Other authors on the paper include Dan Maoz, Naoki Yasuda, Tomonori Totani, Masataka Fukugita, Ryan J. Foley, Jeffrey M. Silverman, Avishay Gal-Yam, Assaf Horesh, and Buell T. Jannuzi. The research was supported in part by the National Science Foundation.

.


Related Links
Introduction to SDF
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
The First Detection of Abundant Carbon in the Early Universe
Tokyo, Japan (SPX) Oct 10, 2011
A research team of astronomers, mainly from Ehime University and Kyoto University in Japan, has successfully detected a carbon emission line (CIV1549) in the most distant radio galaxy known so far in the early universe. Using the Faint Object Camera and Spectrograph (FOCAS) on the Subaru Telescope, the team observed the radio galaxy TN J0924-2201, which is 12.5 billion light years away, an ... read more


STELLAR CHEMISTRY
Subtly Shaded Map of Moon Reveals Titanium Treasure Troves

NASA's Moon Twins Going Their Own Way

Titanium treasure found on Moon

NASA Invites Students to Name Moon-Bound Spacecraft

STELLAR CHEMISTRY
Video Documents Three-Year Trek on Mars by NASA Rover

Mars Express: Current flows and 'islands' in Ares Vallis

Opportunity is on the Move Again

Tracing the Canals of Mars

STELLAR CHEMISTRY
In Response to New York Bait-And-Switch, Brown Calls on NASA to Reevaluate Shuttle Site Placement

Iran failed with space monkey launch: report

UN highlights everyday benefits from space science and technology

Shot US lawmaker honors astronaut husband

STELLAR CHEMISTRY
China's first space lab module in good condition

Takeoff For Tiangong

Snafu as China space launch set to US patriotic song

Civilians given chance to reach for the stars

STELLAR CHEMISTRY
It's All in the Mix With Fluid Physics in Space

DLR ROKVISS robotic arm returns from space

Commercial space deliveries 'within months': NASA

Private US capsule not to dock with ISS

STELLAR CHEMISTRY
Indian-French satellite put into orbit

Chinese rocket sends French telecom satellite into space

On-time preparations continue for Soyuz' milestone mission from French Guiana

US telecoms satellite reaches designated orbit

STELLAR CHEMISTRY
Astronomers Find Elusive Planets in Decade-Old Hubble Data

University of Texas-led Team Discovers Unusual Multi-Planet System with NASA's Kepler Spacecraft

Heavy Metal Stars Produce Earth-Like Planets

Doubts Over Fomalhaut b

STELLAR CHEMISTRY
German satellite hurtles towards Earth: officials

Asia powers PC rebound in computer gaming industry

Global computer sales slow as people turn to tablets

Northrop Grumman Demonstrates HAMMR "On-the-Move" Radar at Yuma Proving Grounds




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement