Subscribe free to our newsletters via your
. 24/7 Space News .




ROBO SPACE
Surprisingly simple scheme for self-assembling robots
by Larry Hardesty for MIT News
Boston MA (SPX) Oct 08, 2013


Known as M-Blocks, the robots are cubes with no external moving parts. Nonetheless, they're able to climb over and around one another, leap through the air, roll across the ground, and even move while suspended upside down from metallic surfaces. To view a video on this research please go here.

In 2011, when an MIT senior named John Romanishin proposed a new design for modular robots to his robotics professor, Daniela Rus, she said, "That can't be done."

Two years later, Rus showed her colleague Hod Lipson, a robotics researcher at Cornell University, a video of prototype robots, based on Romanishin's design, in action. "That can't be done," Lipson said.

In November, Romanishin - now a research scientist in MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL) - Rus, and postdoc Kyle Gilpin will establish once and for all that it can be done, when they present a paper describing their new robots at the IEEE/RSJ International Conference on Intelligent Robots and Systems.

Known as M-Blocks, the robots are cubes with no external moving parts. Nonetheless, they're able to climb over and around one another, leap through the air, roll across the ground, and even move while suspended upside down from metallic surfaces.

Inside each M-Block is a flywheel that can reach speeds of 20,000 revolutions per minute; when the flywheel is braked, it imparts its angular momentum to the cube. On each edge of an M-Block, and on every face, are cleverly arranged permanent magnets that allow any two cubes to attach to each other.

"It's one of these things that the [modular-robotics] community has been trying to do for a long time," says Rus, a professor of electrical engineering and computer science and director of CSAIL. "We just needed a creative insight and somebody who was passionate enough to keep coming at it - despite being discouraged."

Embodied abstraction
As Rus explains, researchers studying reconfigurable robots have long used an abstraction called the sliding-cube model. In this model, if two cubes are face to face, one of them can slide up the side of the other and, without changing orientation, slide across its top.

The sliding-cube model simplifies the development of self-assembly algorithms, but the robots that implement them tend to be much more complex devices. Rus' group, for instance, previously developed a modular robot called the Molecule, which consisted of two cubes connected by an angled bar and had 18 separate motors. "We were quite proud of it at the time," Rus says.

According to Gilpin, existing modular-robot systems are also "statically stable," meaning that "you can pause the motion at any point, and they'll stay where they are." What enabled the MIT researchers to drastically simplify their robots' design was giving up on the principle of static stability.

"There's a point in time when the cube is essentially flying through the air," Gilpin says. "And you are depending on the magnets to bring it into alignment when it lands. That's something that's totally unique to this system."

That's also what made Rus skeptical about Romanishin's initial proposal. "I asked him build a prototype," Rus says. "Then I said, 'OK, maybe I was wrong.'"

Sticking the landing
To compensate for its static instability, the researchers' robot relies on some ingenious engineering. On each edge of a cube are two cylindrical magnets, mounted like rolling pins. When two cubes approach each other, the magnets naturally rotate, so that north poles align with south, and vice versa. Any face of any cube can thus attach to any face of any other.

The cubes' edges are also beveled, so when two cubes are face to face, there's a slight gap between their magnets. When one cube begins to flip on top of another, the bevels, and thus the magnets, touch.

The connection between the cubes becomes much stronger, anchoring the pivot. On each face of a cube are four more pairs of smaller magnets, arranged symmetrically, which help snap a moving cube into place when it lands on top of another.

As with any modular-robot system, the hope is that the modules can be miniaturized: the ultimate aim of most such research is hordes of swarming microbots that can self-assemble, like the "liquid steel" androids in the movie "Terminator II." And the simplicity of the cubes' design makes miniaturization promising.

But the researchers believe that a more refined version of their system could prove useful even at something like its current scale. Armies of mobile cubes could temporarily repair bridges or buildings during emergencies, or raise and reconfigure scaffolding for building projects.

They could assemble into different types of furniture or heavy equipment as needed. And they could swarm into environments hostile or inaccessible to humans, diagnose problems, and reorganize themselves to provide solutions.

Strength in diversity
The researchers also imagine that among the mobile cubes could be special-purpose cubes, containing cameras, or lights, or battery packs, or other equipment, which the mobile cubes could transport. "In the vast majority of other modular systems, an individual module cannot move on its own," Gilpin says.

"If you drop one of these along the way, or something goes wrong, it can rejoin the group, no problem."

"It's one of those things that you kick yourself for not thinking of," Cornell's Lipson says. "It's a low-tech solution to a problem that people have been trying to solve with extraordinarily high-tech approaches."

"What they did that was very interesting is they showed several modes of locomotion," Lipson adds.

"Not just one cube flipping around, but multiple cubes working together, multiple cubes moving other cubes - a lot of other modes of motion that really open the door to many, many applications, much beyond what people usually consider when they talk about self-assembly. They rarely think about parts dragging other parts - this kind of cooperative group behavior."

In ongoing work, the MIT researchers are building an army of 100 cubes, each of which can move in any direction, and designing algorithms to guide them. "We want hundreds of cubes, scattered randomly across the floor, to be able to identify each other, coalesce, and autonomously transform into a chair, or a ladder, or a desk, on demand," Romanishin says.

.


Related Links
Massachusetts Institute Of Technology
All about the robots on Earth and beyond!






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ROBO SPACE
Putting a face on a robot
Atlanta GA (SPX) Oct 03, 2013
What does the assistive robot of the future look like? It depends. A new study from the Georgia Institute of Technology finds that older and younger people have varying preferences about what they would want a personal robot to look like. And they change their minds based on what the robot is supposed to do. Participants were shown a series of photos portraying either robotic, human or mix ... read more


ROBO SPACE
Russia could build manned lunar base

China unveils its first and unnamed moon rover

Mission to moon will boost research and awareness

Mighty Eagle Improves Autonomous Landing Software With Successful Flight

ROBO SPACE
Making Martian clouds on Earth

NASA Mars mission escapes government shutdown, will launch

European rover meant for Mars to undergo earthly desert test

First ARCA flight in the ExoMars Program completed successfully

ROBO SPACE
Naval Institute History Conference: From Mercury to the Shuttle

Samsung to break ground at US research center

Non-Orbiting Space Junk

Paper written as science hoax published by 157 science journals

ROBO SPACE
NASA ban on Chinese scientists 'inaccurate': lawmaker

What's Next, Tiangong?

Onward and upward as China marks 10 years of manned spaceflight

Chinese VP stresses peaceful use of space

ROBO SPACE
Aerojet Rocketdyne Thrusters Help Cygnus Spacecraft Berth at the International Space Station

First CASIS Funded Payloads Berthed to the ISS

Unmanned cargo ship docks with orbiting Space Station

New space crew joins ISS on Olympic torch mission

ROBO SPACE
SES-8 Arrives At Cape Canaveral For SpaceX Falcon 9 Launch

Spaceport Colorado and S3 Sign Memorandum of Understanding

Milky Way-mapping Gaia receives its sunshield

Arianespace's next Ariane 5 mission will serve two key customers: SES and HISPASAT

ROBO SPACE
Researchers Find that Bright Nearby Double Star Fomalhaut Is Actually a Triple

NASA Space Telescopes Find Patchy Clouds On Exotic World

Blurring the lines between stars and planets

Kepler Finds First Signs of Other Earths

ROBO SPACE
Ultrasound system gives virtual feeling of objects in mid-air

Himawari and Mitsubishi Electric Complete Facilities For Weather Satellite Ops

Disney Research develops algorithm for rendering 3-D tactile features on touch surfaces

World's Largest Solar Sail, Sunjammer, Completes Test




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement