Subscribe free to our newsletters via your
. 24/7 Space News .




ROCKET SCIENCE
Supersonic Laser-Propelled Rockets
by Staff Writers
Washington DC (SPX) Oct 30, 2014


The effectiveness of current laser-propulsion techniques is limited by the instability of supersonic gas flow, caused by shock waves that "choke" the inlet of the nozzle, reducing thrust. Those effects can be reduced with the help of laser ablation, redirecting the plasma plume so that it flows close to the interior walls of a supersonic nozzle and significantly improving the overall thrust. Image courtesy Y.Rezunkov/IOIE.

Scientists and science fiction writers alike have dreamt of aircrafts that are propelled by beams of light rather than conventional fuels. Now, a new method for improving the thrust generated by such laser-propulsion systems may bring them one step closer to practical use.

The method, developed by physicists Yuri Rezunkov of the Institute of Optoelectronic Instrument Engineering, Russia and Alexander Schmidt of the Ioffe Physical Technical Institute in Saint Petersburg, Russia is described in The Optical Society's (OSA) journal Applied Optics.

Currently, the maximum speed of a spacecraft is limited by the amount of solid or liquid fuel that it can carry. Achieving higher speeds means that more fuel must be burned-fuel that, inconveniently, has to be carried by the craft and hefted into space.

These burdensome loads can be reduced, however, if a laser-one located at a remote location, and not actually on the spacecraft-were used to provide additional propulsive force.

A number of systems have been proposed that can produce such laser propulsion. One of the most promising involves a process called laser ablation, in which a pulsed laser beam strikes a surface, heats it up, and burns off material to create what is known as a plasma plume-a column of charged particles that flow off the surface.

The outflowing of that plasma plume-essentially, exhaust-generates additional thrust to propel the craft.

In their Applied Optics paper, Rezunkov and Schmidt describe a new system that integrates a laser-ablation propulsion system with the gas blasting nozzles of a spacecraft. Combining the two systems, the researchers found, can increase the speed of the gas flow out of the system to supersonic speeds while reducing the amount of burned fuel.

The researchers show that the effectiveness of current laser-propulsion techniques is limited by factors including the instability of supersonic gases as they flow through the gas nozzle, as well as the production of shock waves that "choke" the inlet of the nozzle, reducing thrust. But those effects can be reduced with the help of a laser-ablation plasma plume that is redirected so that it will flow close to the interior walls of the nozzle.

Coupling the ablation jet with supersonic gas flow through the nozzle, they find, significantly improves the overall thrust generated by the nozzle.

"Summarizing the data obtained, we can forecast the application of the supersonic laser propulsion techniques not only for launching small satellites to Earth orbits but also for additional acceleration of supersonic aircrafts to achieve Mach 10 and more," Rezunkov said.

"Supersonic Laser Propulsion," Y. Rezunkov and A. Schmidt, Applied Optics, Vol. 53, Issue 31, pp. I55-I62 (2014).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
The Optical Society
Rocket Science News at Space-Travel.Com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ROCKET SCIENCE
Decades-old Soviet engines powered US rocket that exploded
Washington (AFP) Oct 29, 2014
The Orbital Sciences rocket that exploded after launch was powered by a pair of rocket engines that were made during the Soviet era and refurbished, experts said Wednesday. The Ukrainian-designed AJ-26 engines date back to the 1960s and 1970s, and Aerojet Rocketdyne of Sacramento, California has a stockpile that it refurbishes for Orbital Sciences. Orbital described the AJ-26 engine on ... read more


ROCKET SCIENCE
NASA's LRO Spacecraft Captures Images of LADEE's Impact Crater

New lunar mission to test Chang'e-5 technology

Next Chinese mission to moon will return to Earth

China's ailing moon rover weakening

ROCKET SCIENCE
A One Way Trip to Mars

Mars 2020 Will Continue Search for Habitability

NASA Seeks Ultra-lightweight Materials to Help Enable Journey to Mars

Eight months on 'Hawaiian Mars' tests rigors of exploration

ROCKET SCIENCE
It's Anchors Aweigh on Modifications to NASA's Pegasus Barge

Mark Olsen - An Atmospheric Dynamicist With a Beat

US space budget still exceeds rest of world's combined

NASA seeks proposals for deep space exploration, journey to Mars

ROCKET SCIENCE
Wenchang to launch China's next space station

China's Main Competitor in Space Exploration is India, Not Russia

China's lunar orbiter modifies orbit

China launches first mission to moon and back

ROCKET SCIENCE
Student Experiments Lost in Antares Rocket Explosion

NASA to work with cargo partners despite rocket crash

Russian space station resupply rocket launches, docks at ISS

ISS Crew Has Enough Supplies Until March 2015

ROCKET SCIENCE
Arianespace signs contract with ELV for ten Vega launchers

Antares Rocket Crash in Virginia Investigation to Take up to Year

Soyuz Installed at Baikonur, Expected to Launch Wednesday

FY 15 launch schedule kicks off with GPS IIF-8 liftoff from 'The Cape'

ROCKET SCIENCE
In a first, astronomers map comets around another star

Getting To Know Super-Earths

Astronomers Spot Faraway Uranus-Like Planet

NASA's Hubble Maps the Temperature and Water Vapor on an Extreme Exoplanet

ROCKET SCIENCE
Reverse engineering materials for more efficient heating and cooling

Steering ESA satellites clear of space debris

Cutting power could dramatically boost laser output

Watching the hidden life of materials




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.