Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
Superconducting Qubit Array Points the Way to Quantum Computers
by Julie Cohen for UCSB News
Santa Barbara CA (SPX) Apr 28, 2014


The control signals for all five qubits.

A fully functional quantum computer is one of the holy grails of physics. Unlike conventional computers, the quantum version uses qubits (quantum bits), which make direct use of the multiple states of quantum phenomena. When realized, a quantum computer will be millions of times more powerful at certain computations than today's supercomputers.

A group of UC Santa Barbara physicists has moved one step closer to making a quantum computer a reality by demonstrating a new level of reliability in a five-qubit array. Their findings appear Thursday in the journal Nature.

Quantum computing is anything but simple. It relies on aspects of quantum mechanics such as superposition. This notion holds that any physical object, such as an atom or electron - what quantum computers use to store information - can exist in all of its theoretical states simultaneously. This could take parallel computing to new heights.

"Quantum hardware is very, very unreliable compared to classical hardware," says Austin Fowler, a staff scientist in the physics department, whose theoretical work inspired the experiments of the Martinis Group. "Even the best state-of-the-art hardware is unreliable. Our paper shows that for the first time reliability has been reached."

While the Martinis Group has shown logic operations at the threshold, the array must operate below the threshold to provide an acceptable margin of error. "Qubits are faulty, so error correction is necessary," said graduate student and co-lead author Julian Kelly who worked on the five-qubit array.

"We need to improve and we would like to scale up to larger systems," said lead author Rami Barends, a postdoctoral fellow with the group. "The intrinsic physics of control and coupling won't have to change but the engineering around it is going to be a big challenge."

The unique configuration of the group's array results from the flexibility of geometry at the superconductive level, which allowed the scientists to create cross-shaped qubits they named Xmons.

Superconductivity results when certain materials are cooled to a critical level that removes electrical resistance and eliminates magnetic fields. The team chose to place five Xmons in a single row, with each qubit talking to its nearest neighbor, a simple but effective arrangement.

"Motivated by theoretical work, we started really thinking seriously about what we had to do to move forward," said John Martinis, a professor in UCSB's Department of Physics. "It took us a while to figure out how simple it was, and simple, in the end, was really the best."

"If you want to build a quantum computer, you need a two-dimensional array of such qubits, and the error rate should be below 1 percent," said Fowler. "If we can get one order of magnitude lower - in the area of 10-3 or 1 in 1,000 for all our gates - our qubits could become commercially viable.

But there are more issues that need to be solved. There are more frequencies to worry about and it's certainly true that it's more complex. However, the physics is no different."

According to Martinis, it was Fowler's surface code that pointed the way, providing an architecture to put the qubits together in a certain way. "All of a sudden, we knew exactly what it was we wanted to build because of the surface code," Martinis said.

"It took a lot of hard work to figure out how to piece the qubits together and control them properly. The amazing thing is that all of our hopes of how well it would work came true."

.


Related Links
UC Santa Barbara
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Device turns flat surface into spherical antenna
Washington DC (SPX) Apr 22, 2014
By depositing an array of tiny, metallic, U-shaped structures onto a dielectric material, a team of researchers in China has created a new artificial surface that can bend and focus electromagnetic waves the same way an antenna does. This breakthrough, which the team is calling the first broadband transformation optics metasurface lens, may lead to the creation of new types of antennas tha ... read more


CHIP TECH
John C. Houbolt, Unsung Hero of the Apollo Program, Dies at Age 95

NASA Completes LADEE Mission with Planned Impact on Moon's Surface

Russia plans to get a foothold in the Moon

Russian Federal Space Agency is elaborating Moon exploration program

CHIP TECH
Traces of recent water on Mars

Drill Here? NASA's Curiosity Mars Rover Inspects Site

Mission to Mars

Opportunity Rover Driving Up To Crater Rim

CHIP TECH
Orion Exploration Design Challenge Winner Announced

Orion Feels the Vibe During Tests at Kennedy Space Center

NASA Partners with LittleBits Electronics on STEM Activitie

China village gunning for tourists

CHIP TECH
China issues first assessment on space activities

China launches experimental satellite

Tiangong's New Mission

"Space Odyssey": China's aspiration in future space exploration

CHIP TECH
Astronauts Complete Short Spacewalk to Replace Backup Computer

No Official Confirmation of NASA Severing Ties with Russian Space Agency

Astronauts Prep for Spacewalk as Mission Managers Evaluate Busy Schedule

Dragon Cargo Craft Launch Scrubbed; Station Crew Preps for Spacewalk

CHIP TECH
Vega for third Arianespace mission, carrying Earth observation spacecraft

It's a "go" for Arianespace's Vega launch with Kazakhstan's first Earth observation satellite

Russia sends two satellites into space

SpaceX sues US Air Force over satellite contracts

CHIP TECH
An Earth-sized planet that might hold liquid water

Seven Samples from the Solar System's Birth

Solved: Mysteries of a Nearby Planetary System's Dynamics

Astronomical Forensics Uncover Planetary Disks in NASA's Hubble Archive

CHIP TECH
Thinnest feasible membrane produced

When things get glassy, molecules go fractal

How Productive are the Ore Factories in the Deep Sea?

Vacuum Ultraviolet Lamp of the Future Created in Japan




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.