Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Super Supernova: White Dwarf Star System Exceeds Mass Limit
by Staff Writers
New Haven CT (SPX) Mar 16, 2010


Cosmologists use Type Ia supernovae, like the one visible in the lower left corner of this galaxy, to explore the past and future expansion of the universe and the nature of dark energy. (Photo: High-Z Supernova Search Team, HST, NASA)

An international team led by Yale University has, for the first time, measured the mass of a type of supernova thought to belong to a unique subclass and confirmed that it surpasses what was believed to be an upper mass limit. Their findings, which appear online and will be published in an upcoming issue of the Astrophysical Journal, could affect the way cosmologists measure the expansion of the universe.

Cosmologists use Type Ia supernovae-the violent explosions of dead cores of stars called white dwarfs-as a kind of cosmic ruler to measure distances to the supernovae's host galaxies and, as such, to understand the past and future expansion of the universe and explore the nature of dark energy.

Until recently, it was thought that white dwarfs could not exceed what is known as the Chandrasekhar limit, a critical mass equaling about 1.4 times that of the Sun, before exploding in a supernova. This uniform limit is a key tool in measuring distances to supernovae.

Since 2003, four supernovae have been discovered that were so bright, cosmologists wondered whether their white dwarfs had surpassed the Chandrasekhar limit. These supernovae have been dubbed the "super-Chandrasekhar" supernovae.

Now Richard Scalzo of Yale, as part of a collaboration of American and French physicists called the Nearby Supernova Factory, has measured the mass of the white dwarf star that resulted in one of these rare supernovae, called SN 2007if, and confirmed that it exceeded the Chandrasekhar limit.

They also discovered that the unusually bright supernova had not only a central mass, but a shell of material that was ejected during the explosion as well as a surrounding envelope of pre-existing material. The team hopes this discovery will provide a structural model with which to understand the other supermassive supernovae.

Using observations from telescopes in Chile, Hawaii and California, the team was able to measure the mass of the central star, the shell and the envelope individually, providing the first conclusive evidence that the star system itself did indeed surpass the Chandrasekhar limit.

They found that the star itself appears to have had a mass of 2.1 times the mass of the Sun (plus or minus 10 percent), putting it well above the limit.

Being able to measure masses for all parts of the star system tells the physicists about how the system may have evolved-a process that is currently poorly understood. "We don't really know much about the stars that lead to these supernovae," Scalzo said. "We want to know more about what kind of stars they were, and how they formed and evolved over time."

Scalzo believes there's a good chance that SN 2007if resulted from the merging of two white dwarfs, rather than the explosion of a single white dwarf and hopes to study the other super-Chandrasekhar supernovae to determine whether they, too, could have involved a merger of two white dwarfs.

Theorists continue to explore how stars with masses above the Chandrasekhar limit, which is based on a simplified star model, could exist without collapsing under their own weight. Either way, a subclass of supernovae governed by different physics could have a dramatic effect on the way cosmologists use them to measure the expansion of the universe.

"Supernovae are being used to make statements about the fate of the universe and our theory of gravity," Scalzo said. "If our understanding of supernovae changes, it could significantly impact of our theories and predictions."

Other Yale authors of the paper include Charles Baltay and David Rabinowitz. Citation: http://arxiv.org/abs/1003.2217

.


Related Links
Yale
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Catastrophic Event Halted Star Birth In Early Galaxy
London, UK (SPX) Mar 11, 2010
Scientists have found evidence of a catastrophic event they believe was responsible for halting the birth of stars in a galaxy in the early Universe. They report their results in the journal Monthly Notices of the Royal Astronomical Society. The researchers, led by Durham University's Department of Physics and funded by the Royal Society and Royal Astronomical Society say the massive galax ... read more


STELLAR CHEMISTRY
New Lunar Images And Data Available To Public

Astronauts decry Obama moon decision

Rocket To Go To Moon Under Design

Student Ready To Battle At 17th Annual Great Moonbuggy Race

STELLAR CHEMISTRY
Lost Into Space Goes The Martian Atmosphere

Opportunity Driving Away From Concepcion Crater

Russia Shortlists 11 For 520-Day Simulation Of Mars Mission

Lava Likely Made River-Like Channel On Mars

STELLAR CHEMISTRY
US lawmakers urge Obama to save NASA moon program

Bipartisan Legislation Introduced To Close The Space Gap

Go Into The Webb Telescope Clean Room

Obama to host April space conference

STELLAR CHEMISTRY
China To Conduct Maiden Space Docking In 2011

China chooses first women astronauts

Russian Launch Issues Delaying China's First Mars Probe

China Plans To Launch Third Unmanned Moon Probe Around 2013

STELLAR CHEMISTRY
World Space Agencies Confirm Serviceability Of ISS Through 2020

ISS Expedition 22 To Return To Earth On March 18

ISS Space Agency Heads Meet To Plan 2011 Operations

Space station could operate until 2028, says consortium

STELLAR CHEMISTRY
ILS Proton To Launch Intelsat 21 And 23

Parallel Preparations Continue For Ariane 5 Flights

USAF Force Licenses Two Launch Complexes For Commercial Use

Aerojet Supports Launch and Orbital Placement of GOES-P

STELLAR CHEMISTRY
How To Hunt For Exoplanets

Watching A Planetary Death March

Seeing ExoPlanet Atmospheres From The Ground

New Technique For Detecting Earth-Like Planets

STELLAR CHEMISTRY
Raytheon, Motion Reality Ink Agreement For Virtual Applications

Shocking Recipe For Making Killer Electrons

First Station Materials Science Rack Being Processed

Three FASTSAT Instruments Pass Tests




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement