Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Submillimeter Array Finds Massive Core In Cold Dark Cloud
by Staff Writers
Manoa HI (SPX) Jun 12, 2009


A dark lane stretches across this false-color, mid-infrared image of a small piece of the Milky Way. These infrared dark clouds can potentially form young stellar clusters like the one seen in the upper right of the figure. NASA/ JPL-Caltech/E. Churchwell (Univ. of Wisconsin)

Astronomers using the Submillimeter Array atop Mauna Kea in Hawaii have found a massive, quiescent object in a dark cloud that is likely to be the direct progenitor of a massive star or stars. Dr. Jonathan Swift of the Institute for Astronomy at the University of Hawaii at Manoa is presenting these results at a press conference at the American Astronomical Society meeting in Pasadena, California.

This may be the first time that scientists have been able to see such a region before massive stars form.

Located near the Aquila rift in the Galactic plane at a distance of 23,000 light-years, this cloud condensation has a mass 120 times that of the Sun contained within a volume smaller than the Oort cloud of comets orbiting at the edge of our solar system, and its temperature is less than 18 degrees above absolute zero. Such a large amount of cold dense gas is likely to evolve into one or more massive stars.

Massive stars - those with a mass of more than 8 times that of the Sun - are much rarer than Sun-like stars. However, they produce disproportionately more radiation, causing them to lead short, spectacular lives. The extreme radiation from massive stars allows astronomers to identify the farthest structures in the Universe, and the general knowledge of massive stars has played a critical role in understanding the evolution of the cosmos.

Massive stars die violently in supernova events so luminous that for short times they can outshine entire galaxies. It is within these death throes that elements heavier than iron are formed, including gold and silver.

The rarity of massive stars and their propensity to quickly destroy the environments from which they form has posed a serious challenge to understanding their formation. But this is changing.

New catalogs of cold dense gas in the Galaxy identified through extinction at mid-infrared wavelengths published by Robert Simon and Jill Rathborne and collaborators in 2006 now allow astronomers to select for study regions that have a high potential for forming massive stars before these stars have formed.

Dr. Swift, the SMA postdoctoral fellow at the Institute for Astronomy, chose these infrared dark clouds as the prime locations to study the initial conditions of massive star formation. "The SMA is a unique instrument in a superb location that facilitates our ability to map the conditions preceding the formation of massive stars with high resolution."

We know from studies of nearby star-forming regions that Sun-like stars form inside dense cores of molecular gas, but whether or not massive stars form in the same manner is a hotly debated topic.

It has been postulated by observers and theorists alike that if massive stars were to form from the collapse of massive cores in a manner similar to Sun-like stars, these cores would need to have 100 solar masses or more contained within about 20,000 AU. The properties of the dense core recently discovered using the Submillimeter Array make it a good candidate for being the direct progenitor of a massive star or stars.

"The mass and density of this object along with the lack of evidence for star formation activity is unique, and this fits very well with our expectations for massive pre-stellar cores," notes Dr. Swift.

The Submillimeter Array, a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics, is the ideal instrument to survey these regions. The SMA detects light with wavelengths longer than the far-infrared, where the coldest objects in the cosmos glow brightest.

Also, by employing a Nobel Prize-winning technology called interferometry, in which signals are combined from two or more small antennas, the SMA produces images of unparalleled resolution at these wavelengths.

The core discovered with the SMA is detected only at these long wavelengths. Not even the Spitzer Space Telescope was able to see this core, which means that no significant amount of star formation has yet taken place. But recent theoretical work and computer simulations suggest that a core with this mass and size can form massive stars in as soon as 50,000 years.

"Perhaps the most exciting thing is that we now know that massive and dense cores with no sign of star formation activity do exist," says Dr. Swift, noting that further study is necessary. In addition to upcoming observations of this core that will utilize the highest resolution capabilities of the SMA, collaborators Thushara Pillai and Steven Longmore, both at Harvard University's Center for Astrophysics, are currently leading surveys with the SMA that will help us better understand the uniqueness of this core and its relevance to high-mass star formation.

.


Related Links
Institute for Astronomy at the University of Hawaii at Manoa
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Red Giant Star Betelgeuse Is Mysteriously Shrinking
Pasadena CA (SPX) Jun 11, 2009
The red supergiant star Betelgeuse, the bright reddish star in the constellation Orion, has steadily shrunk over the past 15 years, according to University of California, Berkeley, researchers. Long-term monitoring by UC Berkeley�s Infrared Spatial Interferometer (ISI) on the top of Mt. Wilson in Southern California shows that Betelgeuse (bet� el juz), which is so big that in our solar system ... read more


STELLAR CHEMISTRY
Mapping The Surface Temperatures Of The Moon

Japan lunar probe ends mission, is crashed onto moon

NASA Announces Winners In Lunar Art Contest

New Tool To Visualize Past, Future Lunar Eclipses

STELLAR CHEMISTRY
Spirit Examines Its Underbelly

Opportunity Progresses South

Mars Orbiter Resumes Science Operations

Return Of The Mars Hoax

STELLAR CHEMISTRY
NASA's Ares I-X Rocket Achieves Historic Hardware Milestones

Exploring The Future Of Commercial Space Transportation

A New Way To Measure Cosmic Distances

New Cleaning Protocol For Future Search For Life Missions

STELLAR CHEMISTRY
China to launch Mars space probe

China To Launch First Mars Probe In Second Half Of 2009

China Launches Yaogan VI Remote-Sensing Satellite

China Able To Send Man To Moon Around 2020

STELLAR CHEMISTRY
Canadian Space Tourist Starts Training For ISS Mission

Work Completed On ISS Docking Bay

ISS Astronauts Complete Spacewalk, Test New Russian Spacesuits

Space station crew doubles to six for first time

STELLAR CHEMISTRY
ILS Announces Two Additional Firm Proton Launches

Stat X Fire Suppression System Selected For Giant Crawlers

Arianespace Receives Ariane 5 For Its TerreStar-1 Mission

SPACEX And ATSB Announce New Launch Date For Razaksat Satellite

STELLAR CHEMISTRY
Planet-Forming Disk Orbiting Twin Suns Revealed

Planet-Hunting Method Succeeds At Last

New Method For Finding Alien Oceans

Let The Planet Hunt Begin

STELLAR CHEMISTRY
CapRock Government Solutions Receives Satellite Industry Leadership Award

Outside View: Navy needs its Hawkeye

Smallest microwave is just a prototype

Study determines strength of rammed earth




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement