Subscribe free to our newsletters via your
. 24/7 Space News .




IRON AND ICE
Subaru Telescope Detects Rare Form of Nitrogen in Comet ISON
by Staff Writers
Tokyo, Japan (SPX) Feb 26, 2014


Close-up of spectra of NH2 emission lines (of the same transitions for both 14NH2 and 15NH2) in Comet ISON, showing the difference in wavelengths and relative intensity between the isotopes. The red and green-dashed lines indicate the observed spectrum. The blue line indicates 15NH2, clearly detected for the first time. Image courtesy NAOJ. For a larger version of this image please go here.

A team of astronomers, led by Ph.D. candidate Yoshiharu Shinnaka and Professor Hideyo Kawakita, both from Kyoto Sangyo University, successfully observed the Comet ISON during its bright outburst in the middle of November 2013. Subaru Telescope's High Dispersion Spectrograph (HDS) detected two forms of nitrogen--14NH2 and 15NH2--in the comet.

This is the first time that astronomers have reported a clear detection of the relatively rare isotope 15NH2 in a single comet and also measured the relative abundance of two different forms of nitrogen ("nitrogen isotopic ratio") of cometary ammonia (NH3) (Figure 1). Their results support the hypothesis that there were two distinct reservoirs of nitrogen the massive, dense cloud ("solar nebula") from which our Solar System may have formed and evolved.

Why did the team focus on studying these different forms of nitrogen in the comet? Comets are relatively small Solar System objects composed of ice and dust, which formed 4.6 billion years ago in the solar nebula when our Solar System was in its infancy. Because they usually reside in cold regions far from the Sun, e.g., the Kuiper belt and Oort cloud, they probably preserve information about the physical and chemical conditions in the early Solar System.

Different forms and abundances of the same molecule provide information about their source and evolution. Were they from a stellar nursery (a primordial interstellar cloud) or from a distinctive cloud (solar nebula) that may have formed our Solar System's star, the Sun? Scientists do not yet understand very well how cometary molecules separate into isotopes with different abundances. Isotopes of nitrogen from ammonia (NH3) may hold the key.

Ammonia (NH3) is a particularly important molecule, because it is the most abundant nitrogen-bearing volatile (a substance that vaporizes) in cometary ice and one of the simplest molecules in an amino group (-NH2) closely related to life. This means that these different forms of nitrogen could link the components of interstellar space to life on Earth as we know it.

Since ammonia is the major carrier of nitrogen in a comet, it is necessary to clear it from the relative abundance of its isotopes to understand how 15NH2 separates in cometary molecules. However, the direct detection of cometary ammonia is difficult, and there are only a few reports of its clear detection. Therefore, the team concentrated on studying the form of NH2 developed after the ammonia was broken down by the light ("photodissociation") in the cometary coma.

The team was fortunate to observe the comet as it neared the Sun, when its icy composition was evaporating. They were also fortunate that NH2, a derivative of ammonia (NH3), is easy to observe in the optical wavelength, and the relative abundance of nitrogen isotopes of cometary ammonia is probably close to that of NH2.

The team used Subaru Telescope's HDS to successfully observe Comet ISON on November 15th and 16th (UT) ("Spectrum of Outburst from Comet ISON Obtained by Subaru Telescope's High-Dispersion Spectrograph", December 2, 2013 Subaru Telescope press release), when the comet had its bright outburst that began on November 14th.

The observation clearly detected 15NH2 from Comet ISON, and the team inferred that the ratio of cometary ammonia of 14N/15N (139+/-38) is consistent with the average (14N/15N~130) of that from the spectra of 12 other comets. In other words, Comet ISON is typical in its relative abundance of 14N/15N in cometary ammonia.

These findings support the hypothesis that there were two distinct reservoirs of nitrogen in the solar nebula: 1) primordial N2 gas having a protosolar value of 14N/15N, and 2) less volatile and probably solid molecules having a ratio of about 14N/15N~150 in the solar nebula. In the case of a dense molecular cloud core, the isotopic ratio of hydrogen cyanide (HCN) is similar to that of comets while its ratio in ammonia is different from its cometary value (Figure 2).

This may mean that the ammonia formed in an environment of a low temperature dust surface, not in the gas of the molecular cloud. Laboratory experiments show that various complex molecules can form on the surface of low temperature dust. If the ammonia molecule formed on the low temperature dust surface, the cometary nucleus could contain a complex molecule that relates to the origin of life, in addition to the ammonia. If this is so, it raises the possibility that the comet brought these materials to Earth.

In the future, the team would like to increase the sample of comets for which nitrogen isotopic ratios of cometary ammonia have been determined. They would also like to carry out laboratory measurements of 15NH2 to obtain more precise isotopic ratios. On a larger scale, the team hopes to investigate the origin of Comet ISON and the mechanisms that triggered its outburst so that we can better understand the evolution of the Solar System.

These results will be published on February 20, 2014 as: Shinnaka, Y., Kawakita, H., Kobayashi, H., Nagashima, M., and Boice, D.C. 2014 "14NH2/15NH2 ratio in Comet C/2010 S1 (ISON) observed during its Outburst in November 2013)" Astrophysical Journal Letters, V 782, L106

.


Related Links
Subaru Telescope
Asteroid and Comet Mission News, Science and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








IRON AND ICE
A good year to find a comet
Paris (ESA) Feb 16, 2014
A team of European astronomers has found a previously unknown comet, detected as a tiny blob of light orbiting our Sun deep in the Solar System. Europe's Teide Observatory Tenerife Asteroid Survey team has been credited with discovering comet P/2014 C1, named 'TOTAS' in recognition of the teamwork involved in the find. The comet was unexpectedly discovered on 1 February during a routine se ... read more


IRON AND ICE
China Focus: Uneasy rest begins for China's troubled Yutu rover

Is Yutu Stuck?

Japan's Pocari Sweat bound for the moon: maker

Lunar ownership laws: a future necessity?

IRON AND ICE
NASA Mars Orbiter Views Opportunity Rover on Ridge

Curiosity Adds Reverse Driving for Wheel Protection

Curiosity Drives On After Crossing Martian Dune

The World Above and Beyond

IRON AND ICE
DARPA Open Catalog Makes Agency-Sponsored Software and Publications Available to All

Orion Underway Recovery Testing Begins off the Coast of California

Inside astronaut Alexander's head

NASA Welcomes University Participants to Develop Science Payloads

IRON AND ICE
No Call for Yutu

What's up, Yutu

China's Jade Rabbit rover comes 'back to life'

Yutu Awakes

IRON AND ICE
Space suit leak happened before, NASA admits

NASA Seeks US Industry Feedback on Options for Future ISS Cargo Services

NASA, International Space Station Partners Announce Future Crew Members

Andrews Space Cargo Module Power Unit Provides Power For Payloads Bound For ISS

IRON AND ICE
'Mission of Firsts' Showcased New Range-Safety Technology at NASA Wallops

First Copernicus satellite at launch site

Arianespace to launch OPTSAT 3000 and VENuS satellites

Lighter engines a headache for satellite launcher Ariane

IRON AND ICE
NASA cries planetary 'bonanza' with 715 new worlds

Detection of Water Vapor in the Atmosphere of a Hot Jupiter

ESA selects planet-hunting PLATO mission

Rife with hype, exoplanet study needs patience and refinement

IRON AND ICE
EIAST showcases DubaiSat-2 results, plans for KhalifaSat at space conference in Singapore

A New Way to Create Porous Materials

USAF reveals 'neighborhood watch' satellite program

UT Dallas-led team makes powerful muscles from fishing line and sewing thread




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.