Subscribe free to our newsletters via your
. 24/7 Space News .




WATER WORLD
Study reveals leakage of carbon from land to rivers, lakes, estuaries and coastal regions
by Staff Writers
Exeter, UK (SPX) Jun 11, 2013


A new study has revealed leakage of stored carbon from land to rivers, lakes, estuaries and coastal regions. Credit: ESA 2003.

When carbon is emitted by human activities into the atmosphere it is generally thought that about half remains in the atmosphere and the remainder is stored in the oceans and on land. New research suggests that human activity could be increasing the movement of carbon from land to rivers, estuaries and the coastal zone indicating that large quantities of anthropogenic carbon may be hidden in regions not previously considered.

The research, published in Nature Geoscience and led by researchers from the Universite Libre de Bruxelles, the University of Exeter, Laboratoire des Sciences du Climat et l'Environnement, the University of Hawai'i and ETH Zurich, has for the first time shown that increased leaching of carbon from soil, mainly due to deforestation, sewage inputs and increased weathering, has resulted in less carbon being stored on land and more stored in rivers, streams, lakes, reservoirs, estuaries and coastal zones - environments that are together known as the 'land-ocean aquatic continuum'.

The study reviewed previously published data and showed that a significant fraction of the carbon emitted through human activity that is taken up by the land is not actually stored there, but in the aquatic continuum.

Pierre Regnier from Universite Libre de Bruxelles said: "The budget of anthropogenic CO2 reported by the Intergovernmental Panel on Climate Change (IPCC) currently does not take into account the carbon leaking from terrestrial ecosystems to rivers, estuaries and coastal regions. As a result of this leakage, the actual storage by terrestrial ecosystems is about 40% lower than the current estimates by the IPCC."

The 'land-ocean aquatic continuum', has not previously been considered an important carbon sink. Future assessments of carbon storage must now take into account the surface areas of the land-ocean aquatic continuum to ensure accurate estimation of carbon storage.

This will also require an improved knowledge of the mechanisms controlling the degradation, preservation and emissions of carbon along the aquatic continuum to fully understand the impact of human activity on carbon transfer.

Professor Pierre Friedlingstein from the University of Exeter said: "Carbon storage in sediments in these rivers and coastal regions could present a more secure environment than carbon stored in soil on land. As soil warms up stored carbon can be lost to the atmosphere. The chances of this occurring in wet sediments are reduced."

A fraction of the carbon that leaches from land to the land-ocean aquatic continuum is emitted back to the atmosphere, while another fraction is sequestered in sediments along the continuum. Only a minor part, about 10%, eventually reaches the open ocean.

Philippe Ciais from the Laboratoire des Sciences du Climat et l'Environnement said: "Our revisited global carbon budget which includes the land-ocean aquatic continuum is still entailed with significant uncertainties. It is however fully consistent with the observed growth rate of atmospheric CO2. Our downward revision of the land carbon storage is also in agreement with very recent results from forest inventories."

A significant part of the carbon storage thought to be offered by ecosystems on land - mainly forests - is thus negated by this leakage of carbon from soils to aquatic systems, and to the atmosphere.

The study received funding from the European Union's Seventh Framework Program (FP7/2007) under grant agreement number 283080, project GEOCARBON. Published in Nature Geoscience under the title 'Anthropogenic perturbation of the carbon fluxes from land to ocean' on 09 June.

.


Related Links
University of Exeter
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Unfrozen mystery: H2O reveals a new secret
Washington DC (SPX) Jun 11, 2013
Using revolutionary new techniques, a team led by Carnegie's Malcolm Guthrie has made a striking discovery about how ice behaves under pressure, changing ideas that date back almost 50 years. Their findings could alter our understanding of how the water molecule responds to conditions found deep within planets and could have implications for energy science. Their work is published in the Proceed ... read more


WATER WORLD
LADEE Arrives at Wallops for Moon Mission

NASA's GRAIL Mission Solves Mystery of Moon's Surface Gravity

Moon dust samples missing for 40 years found in Calif. warehouse

Unusual minerals in moon craters may have been delivered from space

WATER WORLD
Mars Rover Opportunity Trekking Toward More Layers

SciTechTalk: Mars rover readies for 'road trip' on the Red Planet

First woman in space ready for 'one-way flight to Mars'

Aging Mars rover makes new water discoveries

WATER WORLD
TED conference sets stage for a week of bright ideas

NASA's Orion Spacecraft Proves Sound Under Pressure

Expert slams Congress over ban on U.S.-China space cooperation

Why innovation thrives in cities

WATER WORLD
Tiangong-1 ready for docking and entry

Shenzhou-10 mission to teach students in orbit

China to host international seminar on manned spaceflight

General ready for second space mission

WATER WORLD
Star Canadian spaceman Chris Hadfield retiring

Experiments, Spacewalk Preps and Maintenance for Crew

International trio takes shortcut to space station

Science and Maintenance for Station Crew, New Crew Members Prep for Launch

WATER WORLD
Sea Launch IS-27 FROB Report Complete

Europe launches record cargo for space station

New chief urges Ariane 5 modification for big satellites

The Future of Space Launch

WATER WORLD
Kepler Stars and Planets are Bigger than Previously Thought

Astronomers gear up to discover Earth-like planets

Stars Don't Obliterate Their Planets (Very Often)

'Dust trap' around distant star may solve planet formation mystery

WATER WORLD
Sony eyes long game despite console launch triumph

Two New Russian Radars to Start Work Next Year

Sony wins opening skirmish in new-gen console war

Study: Moving business software to cloud promises big energy savings




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement