Subscribe free to our newsletters via your
. 24/7 Space News .




SHAKE AND BLOW
Study faults a 'runaway' mechanism in intermediate-depth earthquakes
by Jennifer Chu for MIT News
Boston MA (SPX) Dec 26, 2013


Local seismometers detect clusters of intermediate-depth earthquakes in and around the Colombian city of Bucaramanga. The epicenter of the quakes, more than 50 kilometers below the surface, is known as the "Nest." Image courtesy of the researchers.

Nearly 25 percent of earthquakes occur more than 50 kilometers below the Earth's surface, when one tectonic plate slides below another, in a region called the lithosphere. Scientists have thought that these rumblings from the deep arise from a different process than shallower, more destructive quakes. But limited seismic data, and difficulty in reproducing these quakes in the laboratory, have combined to prevent researchers from pinpointing the cause of intermediate and deep earthquakes.

Now a team from MIT and Stanford University has identified a mechanism that helps these deeper quakes spread. By analyzing seismic data from a region in Colombia with a high concentration of intermediate-depth earthquakes, the researchers identified a "runaway process" in which the sliding of rocks at great depths causes surrounding temperatures to spike. This influx of heat, in turn, encourages more sliding - a feedback mechanism that propagates through the lithosphere, generating an earthquake.

German Prieto, an assistant professor of geophysics in MIT's Department of Earth, Atmospheric and Planetary Sciences, says that once thermal runaway starts, the surrounding rocks can heat up and slide more easily, raising the temperature very quickly.

"What we predict is for medium-sized earthquakes, with magnitude 4 to 5, temperature can rise up to 1,000 degrees Centigrade, or about 1,800 degrees Fahrenheit, in a matter of one second," Prieto says. "It's a huge amount. You're basically allowing rupture to run away because of this large temperature increase."

Prieto says that understanding deeper earthquakes may help local communities anticipate how much shaking they may experience, given the seismic history of their regions.

He and his colleagues have published their results in the journal Geophysical Research Letters.

Water versus heat: two competing theories
The majority of Earth's seismic activity occurs at relatively shallow depths, and the mechanics of such quakes is well understood: Over time, abutting plates in the crust build up tension as they shift against each other. This tension ultimately reaches a breaking point, creating a sudden rupture that splinters through the crust.

However, scientists have determined that this process is not feasible for quakes that occur far below the surface. Essentially, higher temperatures and pressures at these depths would make rocks behave differently than they would closer to the surface, gliding past rather than breaking against each other.

By way of explanation, Prieto draws an analogy to glass: If you try to bend a glass tube at room temperature, with enough force, it will eventually shatter. But with heating, the tube will become much more malleable, and bend without breaking.

So how do deeper earthquakes occur? Scientists have proposed two theories: The first, called dehydration embrittlement, is based on the small amounts of water in rocks' mineral composition. At high pressure and heat, rocks release water, which lubricates surrounding faults, creating fractures that ultimately set off a quake.

The second theory is thermal runaway: Increasing temperatures weaken rocks, promoting slippage that spreads through the lithosphere, further increasing temperatures and causing more rocks to slip, resulting in an earthquake.

Probing the nest
Prieto and his colleagues found new evidence in support of the second theory by analyzing seismic data from a region of Colombia that experiences large numbers of intermediate-depth earthquakes - quakes whose epicenters are 50 to 300 kilometers below the surface. This region, known as the Bucaramanga Nest, hosts the highest concentration of intermediate-depth quakes in the world: Since 1993, more than 80,000 earthquakes have been recorded in the area, making it, in Prieto's view, an "ideal natural laboratory" for studying deeper quakes.

The researchers analyzed seismic waves recorded by nearby surface seismometers and calculated two parameters: stress drop, or the total amount of energy released by an earthquake, and radiated seismic energy, or the amount of that energy that makes it to the surface as seismic waves - energy that is manifested in the shaking of the ground.

The stronger a quake is, the more energy, or heat, it generates. Interestingly, the MIT group found that only 2 percent of a deeper quake's total energy is felt at the surface. Prieto reasoned that much of the other 98 percent may be released locally as heat, creating an enormous temperature increase that pushes a quake to spread.

Prieto says the study provides strong evidence for thermal runaway as the likely mechanism for intermediate-depth earthquakes. Such knowledge, he says, may be useful for communities around Bucaramanga in predicting the severity of future quakes.

"Usually people in Bucaramanga feel a magnitude 4 quake every month or so, and every year they experience a larger one that can shake significantly," Prieto says. "If you're in a region where you have intermediate-depth quakes and you know the size of the region, you can make a prediction of the type of magnitudes of quakes that you can have, and what kind of shaking you would expect."

While scientists have not focused as much on intermediate-depth earthquakes because most do not cause significant damage, Hiroo Kanamori, a professor emeritus of geophysics at the California Institute of Technology, says more knowledge about these quakes is warranted, as some have been destructive in the past.

"Some intermediate events have caused very strong shaking," says Kanamori, who was not involved in the research. "For example, one of the intermediate-depth aftershocks of the magnitude 9 Tohoku-Oki earthquake in 2011 caused ground motion accelerations as large as, [and] at some locations [even larger than, those] of the main shock. Thus, a better physical understanding of the mechanism of intermediate earthquakes has important implications for hazard mitigation."

Prieto, a native Colombian, plans to deploy seismic stations above the Bucaramanga Nest to better understand the activity of deeper quakes.

.


Related Links
Massachusetts Institute Of Technology
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SHAKE AND BLOW
Scientists anticipated size and location of 2012 Costa Rica earthquake
Atlanta VA (SPX) Dec 27, 2013
Scientists using GPS to study changes in the Earth's shape accurately forecasted the size and location of the magnitude 7.6 Nicoya earthquake that occurred in 2012 in Costa Rica. The Nicoya Peninsula in Costa Rica is one of the few places where land sits atop the portion of a subduction zone where the Earth's greatest earthquakes take place. Costa Rica's location therefore makes it the per ... read more


SHAKE AND BLOW
China's moon rover "sleeps" through lunar night

Will the Moon be carved-up?

NASA Releases New Earthrise Simulation Video

Most Chang'e-3 science tools activated

SHAKE AND BLOW
Curious Results from Mars

Mars One mission: one way ticket to new life

Mars Express heading towards daring flyby of Phobos

ISRO end year on high note after Mars mission

SHAKE AND BLOW
Space trips open to Chinese travelers

Work on NASA's New Orion Spacecraft Progresses as Engineers Pivot to 2014

Boeing Completes Mission Control Center Interface Test

Official: Iran to Send Astronaut into Space in 2024

SHAKE AND BLOW
China launches communications satellite for Bolivia

China's moon rover continues lunar survey after photographing lander

China's Yutu "naps", awakens and explores

Deep space monitoring station abroad imperative

SHAKE AND BLOW
Station's Replacement Pump Successfully Restarted

Russian cosmonauts Kotov and Ryazansky complete ISS spacewalk

Spacewalk ends, station fix a success

Spacewalk ends, ISS fix a success

SHAKE AND BLOW
The Athena-Fidus satellite is readied for Arianespace first heavy-lift mission of 2014

Boeing, Energia Achieve Mixed Results in Counterclaims

Russian Rocket Puts Telecoms Satellite Into Orbit

Orbital Launches Completes 40th Consecutive Successful Suborbital Rocket For NASA

SHAKE AND BLOW
Using an Atmosphere to Weigh a Planet

Gaia Mission Could Help Map Exoplanets

First detection of a predicted unseen exoplanet

Astronomers solve temperature mystery of planetary atmospheres

SHAKE AND BLOW
Laser Demonstration Reveals Bright Future for Space Communication

Scientific data lost at alarming rate

Europe's Gaia telescope detaches from Fregat-MT upper stage

Sailing satellites into safe retirement




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement