Subscribe free to our newsletters via your
. 24/7 Space News .




INTERNET SPACE
Staying cool in the nanoelectric universe by getting hot
by Cory Nealon for UB News
Buffalo NY (SPX) Jan 24, 2014


A University at Buffalo study hints that, to make laptops and other portable electronic devices more robust, more heat might be the answer. Here, nanoconductors squeeze an electrical current into a narrow channel, increasing the amount of heat circulating through a microchip's nanotransistor. Credit: Jon Bird and Jong Han.

As smartphones, tablets and other gadgets become smaller and more sophisticated, the heat they generate while in use increases. This is a growing problem because it can cause the electronics inside the gadgets to fail.

Conventional wisdom suggests the solution is to keep the guts of these gadgets cool.

But a new University at Buffalo research paper hints at the opposite: that is, to make laptops and other portable electronic devices more robust, more heat might be the answer.

"We've found that it's possible to protect nanoelectronic devices from the heat they generate in a way that preserves how these devices function," said Jonathan Bird, UB professor of electrical engineering. "This will hopefully allow us to continue developing more powerful smartphones, tablets and other devices without having a fundamental meltdown in their operation due to overheating."

Bird is the co-lead author along with Jong Han, UB associate professor of physics. Contributing authors are Jebum Lee and Jungwoo Song, who both recently earned PhDs in UB's Department of Electrical Engineering; Shiran Xiao, PhD candidate in electrical engineering at UB; and John L. Reno, Center for Integrated Nanotechnologies at Sandia National Laboratories.

Heat in electronic devices is generated by the movement of electrons through transistors, resistors and other elements of an electrical network. Depending on the network, there are a variety of ways, such as cooling fans and heat sinks, to prevent the circuits from overheating.

But as more integrated circuits and transistors are added to devices to boost their computing power, it's becoming more difficult to keep those elements cool. Most nanoelectrics research centers are working to develop advanced materials that are capable of withstanding the extreme environment inside smartphones, laptops and other devices.

While advanced materials show tremendous potential, the UB research suggests there may still be room within the existing paradigm of electronic devices to continue developing more powerful computers.

To support their findings, the researchers fabricated nanoscale semiconductor devices in a state-of-the-art gallium arsenide crystal provided to UB by Sandia's Reno.

The researchers then subjected the chip to a large voltage, squeezing an electrical current through the nanoconductors. This, in turn, increased the amount of heat circulating through the chip's nanotransistor.

But instead of degrading the device, the nanotransistor spontaneously transformed itself into a quantum state that was protected from the effect of heating and provided a robust channel of electric current. To help explain, Bird offered an analogy to Niagara Falls.

"The water, or energy, comes from a source; in this case, the Great Lakes. It's channeled into a narrow point (the Niagara River) and ultimately flows over Niagara Falls. At the bottom of waterfall is dissipated energy. But unlike the waterfall, this dissipated energy recirculates throughout the chip and changes how heat affects, or in this case doesn't affect, the network's operation."

While this behavior may seem unusual, especially conceptualizing it in terms of water flowing over a waterfall, it is the direct result of the quantum mechanical nature of electronics when viewed on the nanoscale.

The current is made up of electrons which spontaneously organize to form a narrow conducting filament through the nanoconductor. It is this filament that is so robust against the effects of heating.

"We're not actually eliminating the heat, but we've managed to stop it from affecting the electrical network. In a way, this is an optimization of the current paradigm," said Han, who developed the theoretical models which explain the findings.

The paper, "Formation of a protected sub-band for conduction in quantum point contacts under extreme biasing," was published Jan. 19 in the journal Nature Nanotechnology.

.


Related Links
University at Buffalo
Satellite-based Internet technologies






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








INTERNET SPACE
Peekaboo... I see through!
Boston MA (SPX) Jan 23, 2014
Picture the Louvre pyramid: the iconic glass pyramid that serves as main entrance and skylight to the landmark museum. The pyramid is illuminated at night, creating a magical ambience. Imagine strolling next to it while a video about the museum is projected on the glass in front of you, adding information while preserving the elegance of the structure. This seems like a scene taken from Th ... read more


INTERNET SPACE
Sole camera from NASA moon missions to be auctioned

New results on the geologic characteristics of the Chang'e-3 exploration region

China's moon rover experiences abnormality

Yutu moon rover has 'abnormality': Xinhua

INTERNET SPACE
Curiosity Mars Rover Checking Possible Smoother Route

NASA looking for smoother route for Mars rover travels

NASA Mars project: radiation risk of highest concern

Russian Scientists Propose Water Probe for NASA Mars Rover

INTERNET SPACE
FAA Grants Waypoint 2 Space Safety Approval Of Training Programs

Russian Space Farmers Harvest Wheat, Peas and Greens

British astronaut says space travel vital to survival of human race

NASA Launches Third Generation Communications Satellite

INTERNET SPACE
'Goodnight, humans': Says Yutu As The Sun Sets

Extra Time for Tiangong

Netizens extend blessings to troubled lunar rover

Official: China's space policy open to world

INTERNET SPACE
British firm says its space station cameras to provide Web images

Russia Could Go It Alone After ISS Closes

Russia plans three spacewalks from ISS in 2014 - Energia

Space Station 2024 Extension Expands Economic and Research Horizons

INTERNET SPACE
45th Space Wing Supports NASA Launch

Athena-Fidus receives its "kick" for Arianespace's upcoming Ariane 5 launch

ILS Proton To Launch Yamal 601

Turkish Telecoms Satellite to Launch From Baikonur Feb. 15

INTERNET SPACE
First Weather Map of Brown Dwarf

NASA-Sponsored 'Disk Detective' Lets Public Search for New Planetary Nurseries

Astronomers create first map of weather on nearby brown dwarf star

ALMA Discovers a Formation Site of a Giant Planetary System

INTERNET SPACE
Swiss cheese crystal, or high-tech sponge?

NGC Completes Critical Design Review For James Webb Space Telescope

Liquid Crystal Turns Water Droplets Into 'Gemstones'

Spider silk ties scientists up in knots




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement