Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
Stanford team combines logic, memory to build a 'high-rise' chip
by Staff Writers
Stanford CA (SPX) Dec 16, 2014


This illustration represents the four-layer prototype high-rise chip built by Stanford engineers. The bottom and top layers are logic transistors. Sandwiched between them are two layers of memory. The vertical tubes are nanoscale electronic "elevators" that connect logic and memory, allowing them to work together to solve problems. Image courtesy Max Shulaker, Stanford.

For decades, the mantra of electronics has been smaller, faster, cheaper. Today, Stanford engineers add a fourth word - taller. At a conference in San Francisco, a Stanford team will reveal how to build high-rise chips that could leapfrog the performance of the single-story logic and memory chips on today's circuit cards.

Those circuit cards are like busy cities in which logic chips compute and memory chips store data. But when the computer gets busy, the wires connecting logic and memory can get jammed.

The Stanford approach would end these jams by building layers of logic atop layers of memory to create a tightly interconnected high-rise chip. Many thousands of nanoscale electronic "elevators" would move data between the layers much faster, using less electricity, than the bottle-neck prone wires connecting single-story logic and memory chips today.

The work is led by Subhasish Mitra, a Stanford professor of electrical engineering and computer science, and H.-S. Philip Wong, the Williard R. and Inez Kerr Bell Professor in Stanford's School of Engineering. They describe their new high-rise chip architecture in a paper being presented at the IEEE International Electron Devices Meeting.

The researchers' innovation leverages three breakthroughs.

The first is a new technology for creating transistors, those tiny gates that switch electricity on and off to create digital zeroes and ones. The second is a new type of computer memory that lends itself to multi-story fabrication. The third is a technique to build these new logic and memory technologies into high-rise structures in a radically different way than previous efforts to stack chips.

"This research is at an early stage, but our design and fabrication techniques are scalable," Mitra said. "With further development this architecture could lead to computing performance that is much, much greater than anything available today."

Wong said the prototype chip unveiled at IEDM shows how to put logic and memory together into three-dimensional structures that can be mass-produced.

"Paradigm shift is an overused concept, but here it is appropriate," Wong said. "With this new architecture, electronics manufacturers could put the power of a supercomputer in your hand."

Silicon heat
Engineers have been making silicon chips for decades, but the heat emanating from phones and laptops is evidence of a problem. Even when they are switched off, some electricity leaks out of silicon transistors. Users feel that as heat. But at a system level, the leakage drains batteries and wastes electricity.

Researchers have been trying to solve this major problem by creating carbon nanotubes - or CNT - transistors. They are so slender that nearly 2 billion CNTs could fit within a human hair. CNTs should leak less electricity than silicon because their tiny diameters are easier to pinch shut.

Mitra and Wong are presenting a second paper at the conference showing how their team made some of the highest performance CNT transistors ever built.

They did this by solving a big hurdle: packing enough CNTs into a small enough area to make a useful chip.

Until now the standard process used to grow CNTs did not create a sufficient density of these tubes. The Stanford engineers solved this problem by developing an ingenious technique.

They started by growing CNTs the standard way, on round quartz wafers. Then they added their trick. They created what amounts to a metal film that acts like a tape. Using this adhesive process they lifted an entire crop of CNTs off the quartz growth medium and placed it onto a silicon wafer. This silicon wafer became the foundation of their high-rise chip.

But first they had to fabricate a CNT layer with sufficient density to make a high performance logic device. So they went though this process 13 times, growing a crop of CNTs on the quartz wafer, and then using their transfer technique to lift and deposit these CNTs onto the silicon wafer.

Using this elegant technological fix, they achieved some of the highest density, highest performance CNTs ever made - especially given that they did this in an academic lab with less sophisticated equipment than a commercial fabrication plant.

Moreover, the Stanford team showed that they could perform this technique on more than one layer of logic as they created their high-rise chip.

What about the memory?
Creating high-performance layers of CNT transistors was only part of their innovation. Just as important was their ability to build a new type of memory directly atop each layer of CNTs.

Wong is a world leader in this new memory technology, which he unveiled at last year's IEDM conference.

Unlike today's memory chips, this new storage technology is not based on silicon.

Instead, the Stanford team fabricated memory using titanium nitride, hafnium oxide and platinum. This formed a metal/oxide/metal sandwich. Applying electricity to this three-metal sandwich one way causes it to resist the flow of electricity. Reversing the electric jolt causes the structure to conduct electricity again.

The change from resistive to conductive states is how this new memory technology creates digital zeroes and ones. The change in conductive states also explains its name: resistive random access memory, or RRAM.

Wong designed RRAM to use less energy than current memory, leading to prolonged battery life in mobile devices.

Inventing this new memory technology was also the key to creating the high-rise chip because RRAM can be made at much lower temperatures than silicon memory.

Interconnected layers
Max Shulaker and Tony Wu, Stanford graduate students in electrical engineering, created the techniques behind the four-story high-rise chip unveiled at the conference.

Everything hinged on the low-heat process for making RRAM and CNTs, which enabled them to fabricate each layer of memory directly atop each layer of CNT logic. While making each memory layer, they were able to drill thousands of interconnections into the logic layer below.

This multiplicity of connections is what enables the high-rise chip to avoid the traffic jams on conventional circuit cards.

There is no way to tightly interconnect layers using today's conventional silicon-based logic and memory. That's because it takes so much heat to build a layer of silicon memory - about 1,000 degrees centigrade - that any attempt to do so would melt the logic below.

Previous efforts to stack silicon chips could save space but not avoid the digital traffic jams. That's because each layer would have to be built separately and connected by wires--which would still be prone to traffic jams, unlike the nanoscale elevators in the Stanford design.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Stanford School of Engineering
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Organic electronics could lead to cheap, wearable medical sensors
Berkeley CA (SPX) Dec 11, 2014
Future fitness trackers could soon add blood-oxygen levels to the list of vital signs measured with new technology developed by engineers at UC Berkeley. "There are various pulse oximeters already on the market that measure pulse rate and blood-oxygen saturation levels, but those devices use rigid conventional electronics, and they are usually fixed to the fingers or earlobe," said Ana Ari ... read more


CHIP TECH
'Shooting the Moon' with Satellite Laser Ranging

Moon Express testing compact lunar lander at Kennedy

UK Plans to Drill Into Moon, Explore Feasibility of Manned Base

Carnegie Mellon Unveils Lunar Rover "Andy"

CHIP TECH
Tales from a Martian Rock

Russian scientists 'map' water vapor in Martian atmosphere

Flying over Becquerel

New idea for transporting spacecraft could ease trip to Mars

CHIP TECH
FFD signs Space Act Agreement with NASA for Space Suit Development

NASA Selects Commercial Space Partners for Collaborative Partnerships

Does the peer review process stifle scientific innovation?

NASA releases video of Orion spacecraft re-entry from astronaut's perspective

CHIP TECH
China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

China develops new rocket for manned moon mission: media

Service module of China's returned lunar orbiter reaches L2 point

CHIP TECH
Bright lights: big cities at night

NASA, SpaceX Update Launch of Fifth SpaceX Resupply Mission to ISS

Fifth SpaceX Mission Lets the CATS Out on the International Space Station

Politics no problem, say US and Russian spacefarers

CHIP TECH
SES: Astra 2G ready for Dec 28 Proton launch

Soyuz Installed at Baikonur, Expected to Launch Wednesday

Russian Space Agency Pushes Back Earth Imaging Satellite Launch to Friday

State Spaceports Receive Federal Funding

CHIP TECH
Kepler Proves It Can Still Find Planets

NASA's Kepler Reborn, Makes First Exoplanet Find of New Mission

Super-Earth spotted by ground-based telescope, a first

Astronomers spot Pluto-size objects swarming about young sun

CHIP TECH
Lead islands in a sea of graphene magnetize the material of the future

Theory details how 'hot' monomers affect thin-film formation

Penn Researchers Show Commonalities in How Different Glassy Materials Fail

Danish radars for new British offshore patrol boats




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.