Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
Stanford researchers build transparent, super-stretchy skin-like sensor
by Staff Writers
Stanford CA (SPX) Oct 26, 2011


A close-up view of the super-stretchy, transparent, highly sensitive skin-like sensor that Zhenan Bao, associate professor of chemical engineering, and Darren Lipomi, postdoctoral researcher in chemical engineering, developed at Stanford University with their colleagues. Credit: Steve Fyffe, Stanford News Service.

Imagine having skin so supple you could stretch it out to more than twice its normal length in any direction - repeatedly - yet it would always snap back completely wrinkle-free when you let go of it. You would certainly never need Botox.

That enviable elasticity is one of several new features built into a new transparent skin-like pressure sensor that is the latest sensor developed by Stanford's Zhenan Bao, associate professor of chemical engineering, in her quest to create an artificial "super skin."

The sensor uses a transparent film of single-walled carbon nanotubes that act as tiny springs, enabling the sensor to accurately measure the force on it, whether it's being pulled like taffy or squeezed like a sponge.

"This sensor can register pressure ranging from a firm pinch between your thumb and forefinger to twice the pressure exerted by an elephant standing on one foot," said Darren Lipomi, a postdoctoral researcher in Bao's lab, who is part of the research team.

"None of it causes any permanent deformation," he said.

Lipomi and Michael Vosgueritchian, graduate student in chemical engineering, and Benjamin Tee, graduate student in electrical engineering, are the lead authors of a paper describing the sensor published online Oct. 23 by Nature Nanotechnology. Bao is a coauthor of the paper.

The sensors could be used in making touch-sensitive prosthetic limbs or robots, for various medical applications such as pressure-sensitive bandages or in touch screens on computers.

The key element of the new sensor is the transparent film of carbon "nano-springs," which is created by spraying nanotubes in a liquid suspension onto a thin layer of silicone, which is then stretched.

When the nanotubes are airbrushed onto the silicone, they tend to land in randomly oriented little clumps. When the silicone is stretched, some of the "nano-bundles" get pulled into alignment in the direction of the stretching.

When the silicone is released, it rebounds back to its original dimensions, but the nanotubes buckle and form little nanostructures that look like springs.

"After we have done this kind of pre-stretching to the nanotubes, they behave like springs and can be stretched again and again, without any permanent change in shape," Bao said.

Stretching the nanotube-coated silicone a second time, in the direction perpendicular to the first direction, causes some of the other nanotube bundles to align in the second direction. That makes the sensor completely stretchable in all directions, with total rebounding afterward.

Additionally, after the initial stretching to produce the "nano-springs," repeated stretching below the length of the initial stretch does not change the electrical conductivity significantly, Bao said.

Maintaining the same conductivity in both the stretched and unstretched forms is important because the sensors detect and measure the force being applied to them through these spring-like nanostructures, which serve as electrodes.

The sensors consist of two layers of the nanotube-coated silicone, oriented so that the coatings are face-to-face, with a layer of a more easily deformed type of silicone between them.

The middle layer of silicone stores electrical charge, much like a battery. When pressure is exerted on the sensor, the middle layer of silicone compresses, which alters the amount of electrical charge it can store. That change is detected by the two films of carbon nanotubes, which act like the positive and negative terminals on a typical automobile or flashlight battery.

The change sensed by the nanotube films is what enables the sensor to transmit what it is "feeling."

Whether the sensor is being compressed or extended, the two nanofilms are brought closer together, which seems like it might make it difficult to detect which type of deformation is happening. But Lipomi said it should be possible to detect the difference by the pattern of pressure.

With compression, you would expect to see sort of a bull's-eye pattern, with the greatest deformation at the center and decreasing deformation as you go farther from the center.

"If the device was gripped by two opposing pincers and stretched, the greatest deformation would be along the straight line between the two pincers," Lipomi said. Deformation would decrease as you moved farther away from the line.

Bao's research group previously created a sensor so sensitive to pressure that it could detect pressures "well below the pressure exerted by a 20 milligram bluebottle fly carcass" that the researchers tested it with. This latest sensor is not quite that sensitive, she said, but that is because the researchers were focused on making it stretchable and transparent.

"We did not spend very much time trying to optimize the sensitivity aspect on this sensor," Bao said.

"But the previous concept can be applied here. We just need to make some modifications to the surface of the electrode so that we can have that same sensitivity."

Lipomi, Vosgueritchian and Tee contributed equally to the research and are co-primary authors of the Nature Nanotechnology paper. Sondra Hellstrom, a graduate student in applied physics; Jennifer Lee, an undergraduate in chemical engineering; and Courtney Fox, a graduate student in chemical engineering, also contributed to the research and are co-authors of the paper.

.


Related Links
Stanford University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Scientists develop new nanomaterial that 'steers' current in multiple dimensions
Evanston IL (SPX) Oct 20, 2011
Scientists at Northwestern University have developed a new nanomaterial that can "steer" electrical currents. The development could lead to a computer that can simply reconfigure its internal wiring and become an entirely different device, based on changing needs. As electronic devices are built smaller and smaller, the materials from which the circuits are constructed begin to lose their ... read more


NANO TECH
Lunar Probe to search for water on Moon

Subtly Shaded Map of Moon Reveals Titanium Treasure Troves

NASA's Moon Twins Going Their Own Way

Titanium treasure found on Moon

NANO TECH
Opportunity Past 21 Miles of Driving! Will Spend Winter at Cape York

Scientists develope new way to determine when water was present on Mars and Earth

Mars Rover Carries Device for Underground Scouting

Mars Landing-Site Specialist

NANO TECH
NASA evacuates astronauts from deep-sea training

Is Your Space Elevator Going Up

Space tourism gaining momentum

NASA Veteran Alan Stern to Lead Florida Space Institute

NANO TECH
China plans space lab docking

Living on Tiangong

Thousands of dreams to fly on Shenzhou 8

China's first space lab module in good condition

NANO TECH
Russian Space Agency names next crew to ISS

ISS orbit readjusted by 3 km

Expedition 30 to ISS could be launched on Dec 21

ISS could be used for satellite assembly until 2028

NANO TECH
Weather Favorable for NPP Launch

Vega arrives at French Guiana in preparation for its January 26 inaugural launch

SpaceX Completes Key Milestone to Fly Astronauts to International Space Station

ILS Proton Launches ViaSat-1 for ViaSat

NANO TECH
Herschel Finds Oceans of Water in Disk of Nearby Star

UH Astronomer Finds Planet in the Process of Forming

Nearby planet-forming disk holds water for thousands of oceans

Herschel discovers tip of cosmic iceberg around nearby young star

NANO TECH
RIM stock suffers on new tablet software stall

Wearable depth-sensing projection system makes any surface capable of multitouch interaction

ROSAT re-entered atmosphere over Bay of Bengal

The eyes have it: Computer-inspired creativity




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement