Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. 24/7 Space News .




SPACE SCOPES
Standard Candle' Supernova Extraordinarily Magnified by Gravitational Lensing
by Staff Writers
Kashiwa, Japan (SPX) Apr 29, 2013


Schematic illustration of the magnification of PS1-10afx. A massive object between us and the supernova bends light rays much as a glass lens can focus light. As more light rays are directed toward the observer than would be without the lens, the supernova appears magnified. (Credit: Kavli IPMU).

A team of researchers at the Kavli IPMU led by Robert Quimby has identified what may prove to be the first ever Type Ia supernova (SNIa) magnified by a strong gravitational lens.

In this work, the 'standard candle' property of Type Ia supernovae is used to directly measure the magnification due to gravitational lensing.

This provides the first glimpse of the science that will soon come out of dark matter and dark energy studies derived from deep, wide-field imaging surveys. The supernova, named PS1-10afx, was discovered by the Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS1).

PS1-10afx exploded over 9 billion years ago, which places it far further than typical Pan-STARRS1 discoveries. Based on this distance and its relatively bright appearance, the Pan-STARRS1 team concluded that PS1-10afx was intrinsically very luminous.

The inferred luminosity, about 100 billion times greater than our Sun, is comparable to members of a new, rare variety of superluminous supernovae (SLSNe), but that is where the similarities end.

SLSNe typically have blue colors, and their brightness changes relatively slowly with time. PS1-10afx on the other hand was rather red even after correcting for its redshift, and its brightness changed as fast as normal supernovae. There is no known physical model that can explain how a supernova could simultaneously be so luminous, so red, and so fast.

Soon after the findings were announced, Robert Quimby, a postdoctoral researcher at Kavli IPMU, independently analyzed the data. Quimby is an expert in SLSNe and has played a key role in their discovery. He quickly confirmed part, but not all of the conclusions.

PS1-10afx was indeed rather distinct from all known SLSNe, but the data struck Quimby as oddly familiar. He compared the features seen in the spectra of PS1-10afx to known supernova, and, surprisingly, found an excellent match. The spectra of PS1-10afx are almost identical to normal SNIa.

SNIa have a very useful property that has enabled cosmologists to chart the expansion of our Universe over the last several billion years: SNIa have strikingly similar peak luminosities that can be rendered even more standard by correcting for how quickly they brighten and fade (their "light curves").

This property allows astronomers to use SNIa as standard candles to measure distances, as was key to the discovery of the accelerating expansion of the Universe (2011 Nobel Prize in Physics).

How does the light curve of PS1-10afx compare to SNIa? After correcting for time dilation (another consequence of our expanding Universe), the light-curve of PS1-10afx is perfectly consistent with a SNIa, but the observed brightness of PS1-10afx is far too high for such a distant SNIa (see Figure 2).

To understand this mysterious discovery, Quimby tapped into cosmologists and mathematicians at Kavli IPMU, including Marcus Werner who specializes in mathematical theory of gravitational lensing, and found an explanation: the anomalously high brightness could indicate that PS1-10afx was gravitationally lensed by an object between us and the supernova. While

While light travels through space in "straight" lines, massive objects warp space and thus cause rays of light to "bend" around them. Thus if there is a sufficiently massive object aligned between us and PS1-10afx, light rays that would have gone off to other parts of the cosmos will be focused on us, making PS1-10afx appear brighter).

This does not change the colors or spectra of the lensed object, nor does it change how fast the supernova evolves. The supernova simply appears brighter than it would otherwise, just as was observed for PS1-10afx. In this case, the lensing object may be detectable even after the supernova has faded away; future observations may thus provide final confirmation of this scenario.

The Kavli IPMU team's identification of the first strongly lensed SNIa is unprecedented but not entirely unexpected. Masamune Oguri, one of the co-authors on Quimby's team, led a paper a few years ago predicting that Pan-STARRS1 was capable of discovering strongly lensed SNIa.

Oguri has shown that such objects may be exploited to place precise constraints on the cosmology of the Universe. Now that Quimby's team has shown how to identify them, next generation surveys with the Hyper Suprime-Cam on Subaru Telescope and the planned LSST can be tuned to discover even more strongly lensed SNIa. These discoveries can be used to study the nature of dark matter, test theories of gravity, and help reveal what our universe is made of.

The Astrophysical Journal Letters, 768:L20 (5pp), 2013 May 1; "Extraordinary Magnification of the Ordinary Type Ia Supernova PS1-10afx"; Authors: Robert Quimby, Marcus Werner, Masamune Oguri, Surhud More, Anupreeta More, Masayuki Tanaka, Ken'ichi Nomoto, Takashi Moriya, Gaston Folatelli, Keiichi Maeda, and Melina Bersten (Kavli IPMU)

.


Related Links
Kavli IPMU
Space Telescope News and Technology at Skynightly.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





SPACE SCOPES
Herschel and Hubble See the Horsehead in New Light
Paris (ESA) Apr 25, 2013
New views of the Horsehead Nebula and its turbulent environment have been unveiled by ESA's Herschel space observatory and the NASA/ESA Hubble space telescope. The Horsehead Nebula lies in the constellation Orion, about 1,300 light-years away, and is a popular target for amateur and professional astronomers alike. It sits just to the south of star Alnitak, the easternmost of Orion's famous ... read more


SPACE SCOPES
Characterizing The Lunar Radiation Environment

Russia rekindles Moon exploration program, intends setting up first human outposts there

Pre-existing mineralogy may survive lunar impacts

Lunar cycle determines hunting behaviour of nocturnal gulls

SPACE SCOPES
Dutch reality show seeks one-way astronauts for Mars

Accurate pointing by Curiosity

NASA Mars Orbiter Images May Show 1971 Soviet Lander

Opportunity is in position for solar conjunction at 'Cape York' on the rim of Endeavour Crater

SPACE SCOPES
NASA Invites the Public to Fly Along with Voyager

Google's Brin keeps spotlight on future technologies

Mysterious water on Jupiter came from comet smash

What makes a good astronaut?

SPACE SCOPES
Yuanwang III, VI depart for space-tracking missions

Shenzhou's Shadow Crew

Shenzhou 10 sent to launch site

China's Next Women Astronauts

SPACE SCOPES
Cargo spaceship docks with ISS despite antenna mishap

ISS Communications Test Bed Checks Out; Experiments Begin

Spacewalkers Deploy Plasma Experiment, Install Navigational Aid

The New and Improved ISS Facilities Brochure

SPACE SCOPES
On the record with... Stephane Israel, Arianespace Chairman and CEO

Vega's three-satellite payload is integrated and ready for launch

NASA Seeks Innovative Suborbital Flight Technology Proposals

Stephane Israel named Chairman and CEO of Arianespace

SPACE SCOPES
Astronomer studies far-off worlds through 'characterization by proxy'

Mysterious Hot Spots Observed In A Cool Red Supergiant

Orbital Selected By NASA for TESS Astrophysics Satellite

Star-and Planet-Forming Regions May Hold Key to Life's Chirality

SPACE SCOPES
Vaterite: Crystal within a crystal helps resolve an old puzzle

Space debris problem now urgent - scientists

Nothing Bugs These NASA Aeronautical Researchers

US eases export rules on aerospace parts




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement