Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Stabilizing shell effects in heaviest elements directly measured
by Staff Writers
Darmstadt, Germany (SPX) Aug 17, 2012


Enrique Minaya Ramirez (r.) and Michael Block with the Shiptrap ion detector.

An international research team has succeeded in directly measuring the strength of shell effects in very heavy elements. The results provide information on the nuclear structure of superheavy elements, thus promising to enable drastically improved predictions concerning the location and extension of the island of stability of superheavy elements.

Indeed, it is expected that such elements with "magic" numbers of protons and neutrons will profit from enhanced stability due to shell effects, which endow them with long lifetimes.

For the present measurements, performed on several isotopes of the elements nobelium und lawrencium, the scientists utilized the Penning trap facility SHIPTRAP at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt. The results have been published in the renowned Science magazine.

So-called "superheavy" elements owe their very existence exclusively to shell effects within the atomic nucleus. Without this stabilization they would disintegrate in a split second due to the strong repulsion between their many protons.

The constituents of an atomic nucleus, the protons and neutrons, organize themselves in shells. Certain "magic" configurations with completely filled shells render the protons and neutrons to be more strongly bound together.

Long-standing theoretical predictions suggest that also in superheavy elements, filled proton and neutron shells will give rise to extraordinarily stable and hence long-lived nuclei: the "Island of stability".

Still, after decades of research, its exact location on the chart of nuclei is a topic of intense discussions and no consensus has yet been reached. While some theoretical models predict a magic proton number to be at element 114, others prefer element 120 or even 126.

Another burning question is whether nuclei situated on the island will live "only" hundreds or maybe thousands or even millions of years. Anyway, all presently known superheavy elements are short-lived and none have been found in nature yet.

Precise information on the strength of shell effects that enhance binding energies of protons and neutrons for filled shells is a key ingredient for more accurate theoretical predictions. As the binding energy is directly related to the mass via Einstein's famous equation E=mc2, the weighing of nuclei provides access to the nuclear binding energies and thus the strength of the shell effects.

With the ion-trap facility SHIPTRAP, presently the most precise balance for weighing the heaviest elements, a series of very heavy atomic nuclei in the region of the magic neutron number N=152 have now been weighed with utmost precision for the first time. The studies at hand focused on nobelium (element 102) and lawrencium (element 103).

These elements do not exist in nature, so the scientists produced them at the GSI's particle accelerator facility and captured them in the SHIPTRAP. The measurements had to be performed with just a handful of atoms: for the isotope lawrencium-256 just about 50 could be studied during a measurement time of about 93 hours.

The new data will benchmark the best present models for the heaviest atomic nuclei and provide an important stepping stone to further refining the models. This will lead to more precise predictions on the location and extension of the "Island of stability" of superheavy elements.

The experiments were carried out by an international team led by scientists of GSI and the Helmholtz-Institute Mainz (HIM) in collaboration with scientists from the universities of Giessen, Granada (Spain), Greifswald, Heidelberg, Mainz, Munich und Padua (Italy), as well as the Max-Planck- Institute for Nuclear Physics Heidelberg and the PNPI St. Petersburg (Russia).

E. Minaya Ramirez et al. "Direct mapping of nuclear shell effects in the heaviest elements" von, Science 2012 DOI: 10.1126/science.1225636

.


Related Links
GSI
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Closing in on the Border Between Primordial Plasma and Ordinary Matter
Upton, NY (SPX) Aug 15, 2012
Scientists taking advantage of the versatility and new capabilities of the Relativistic Heavy Ion Collider (RHIC), an atom smasher at the U.S. Department of Energy's Brookhaven National Laboratory, have observed first glimpses of a possible boundary separating ordinary nuclear matter, composed of protons and neutrons, from the seething soup of their constituent quarks and gluons that permeated t ... read more


TIME AND SPACE
LRO Spectrometer Detects Helium in Moon's Atmosphere

NASA's 'Mighty Eagle' Robotic Prototype Lander Flies Again at Marshall

Roscosmos Announces Tender for Moon Rocket Design

US flags still on the moon, except one: NASA

TIME AND SPACE
Opportunity is on the Move Again

How a Mars Sample Return Mission Can Go Electric

Curiosity Finds Humor on Mars

Microsemi Space Solutions On Board Historic Mars Rover Mission

TIME AND SPACE
Florida Spaceport Stakes Claim to Commercial Missions

Dutch reality show to offer one-way tickets to Mars

NASA, Louisiana Officials Renew Partnership With National Center For Advanced Manufacturing

New US website lets 'crowd' fund college grad startups

TIME AND SPACE
Hong Kong people share joy of China's manned space program

China's Long March-5 carrier rocket engine undergoes testing

China to land first moon probe next year

China launches Third satellite in its global data relay network

TIME AND SPACE
ATV-3 Vehicle Fails to Adjust Space Station Orbit

ISS crew to embark on two spacewalks in August

New Way of Turning Station Offers Fuel Savings on Orbit

Microgravity Science Glovebox Marks Anniversary with 'Hands' on the Future

TIME AND SPACE
Pre launch verifications are underway for next Soyuz mission

GSAT-10 "spreads its wings" in preparation for Arianespace's next Ariane 5 launch

The Spaceport moves into action for Arianespace's next Soyuz mission to orbit two Galileo satellites

Sea Launch Prepares for the Launch of Intelsat 21

TIME AND SPACE
Five Potential Habitable Exoplanets Now

RIT Leads Development of Next-generation Infrared Detectors

UCF Discovers Exoplanet Neighbor

Can Astronomers Detect Exoplanet Oceans

TIME AND SPACE
Micro-thruster could move small satellites

World's most powerful X-ray laser beam refined to scalpel precision

Apple stock hits new high on gadget rumors

Russia: Wayward rocket no threat to ISS




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement