Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Squid and zebrafish cells inspire camouflaging smart materials
by Staff Writers
Bristol UK (SPX) May 04, 2012


The colour changes in these organisms can be triggered by changes in mood, temperature, stress or something visible in the environment, and can be used for camouflage, communication or attracting a mate.

Researchers from the University of Bristol have created artificial muscles that can be transformed at the flick of a switch to mimic the remarkable camouflaging abilities of organisms such as squid and zebrafish.

They demonstrate two individual transforming mechanisms that they believe could be used in 'smart clothing' to trigger camouflaging tricks similar to those seen in nature.

"We have taken inspiration from nature's designs and exploited the same methods to turn our artificial muscles into striking visual effects," said lead author of the study Jonathan Rossiter.

The soft, stretchy, artificial muscles are based on specialist cells called chromatophores that are found in amphibians, fish, reptiles and cephalopods, and contain pigments of colours that are responsible for the animals' remarkable colour-changing effects.

The colour changes in these organisms can be triggered by changes in mood, temperature, stress or something visible in the environment, and can be used for camouflage, communication or attracting a mate.

Two types of artificial chromatophores were created in the study: the first based on a mechanism adopted by a squid and the second based on a rather different mechanism adopted by zebrafish.

A typical colour-changing cell in a squid has a central sac containing granules of pigment. The sac is surrounded by a series of muscles and when the cell is ready to change colour, the brain sends a signal to the muscles and they contract. The contracting muscles make the central sacs expand, generating the optical effect which makes the squid look like it is changing colour.

The fast expansion of these muscles was mimicked using dielectric elastomers (DEs) - smart materials, usually made of a polymer, which are connected to an electric circuit and expand when a voltage is applied. They return to their original shape when they are short circuited.

In contrast, the cells in the zebrafish contain a small reservoir of black pigmented fluid that, when activated, travels to the skin surface and spreads out, much like the spilling of black ink. The natural dark spots on the surface of the zebrafish therefore appear to get bigger and the desired optical effect is achieved. The changes are usually driven by hormones.

The zebrafish cells were mimicked using two glass microscope slides sandwiching a silicone layer. Two pumps, made from flexible DEs, were positioned on both sides of the slide and were connected to the central system with silicone tubes; one pumping opaque white spirit, the other a mixture of black ink and water.

"Our artificial chromatophores are both scalable and adaptable and can be made into an artificial compliant skin which can stretch and deform, yet still operate effectively. This means they can be used in many environments where conventional 'hard' technologies would be dangerous, for example at the physical interface with humans, such as smart clothing," continued Rossiter.

The published version of the paper "Biomimetic chromatophores for camouflage and soft active surfaces" (Bioinspir. Biomim. 7 036009) will be freely available online from 2 May.

.


Related Links
Institute of Physics
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
At smallest scale, liquid crystal behavior portends new materials
Madison WI (SPX) May 04, 2012
Liquid crystals, the state of matter that makes possible the flat screen technology now commonly used in televisions and computers, may have some new technological tricks in store. Writing in the journal Nature, an international team of researchers led by University of Wisconsin-Madison Professor of Chemical and Biological Engineering Juan J. de Pablo reports the results of a computational ... read more


TECH SPACE
Perigee "Super Moon" On May 5-6

India's second moon mission Chandrayaan-2 to wait

European Google Lunar X Prize Teams Call For Science Payloads

Russia to Send Manned Mission to Moon by 2030

TECH SPACE
Opportunity's Eighth Anniversary View From Greeley Haven

Studies of 'Amboy' Rock Continue as Solar Energy Improves

New form of Mars lava flow dicovered

100 Days and Counting to NASA's Curiosity Mars Rover Landing

TECH SPACE
How will the US biotechnology industry benefit from new patent laws?

Space -- the next frontier for Hillary Clinton?

Company to Create 'Gas Stations' in Space

Boeing, NASA Sign Agreement on Mission Support for CST-100

TECH SPACE
China's Lunar Docking

Shenzhou-9 may take female astronaut to space

China to launch 100 satellites during 2011-15

Three for Tiangong

TECH SPACE
Space Station's Robotic Crew Member Designed to Look, Move and Work Like a Human

Expedition 30 Lands in Kazakhstan

Three astronauts to land from ISS Friday

Expedition 30 Crew Returning Home Friday

TECH SPACE
SpaceX delays ISS launch again

500 Students Participate in NASA Student Launch Projects Challenge

A highly symbolic mission is reflected in words and images on Ariane 5's payload fairing

A "mirror image" payload refueling for Arianespace's next Ariane 5 mission

TECH SPACE
Three Earthlike planets identified by Cornell astronomers

Some Stars Capture Rogue Planets

ALMA Reveals Workings of Nearby Planetary System

UF-led team uses new observatory to characterize low-mass planets orbiting nearby star

TECH SPACE
At smallest scale, liquid crystal behavior portends new materials

Electronic nose out in front

Squid and zebrafish cells inspire camouflaging smart materials

Apple iPad outmuscles Android in global tablet sales




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement