Subscribe free to our newsletters via your
. 24/7 Space News .




SPACE SCOPES
Spitzer Sees Crystal 'Rain' in Outer Clouds of Infant Star
by Staff Writers
Pasadena CA (SPX) May 27, 2011


NASA's Spitzer Space Telescope detected tiny green crystals, called olivine, thought to be raining down on a developing star. This graphic illustrates the process, beginning with a picture of the star and ending with an artist's concept of what the crystal "rain" might look like. The top picture was taken in infrared light by NASA's Spitzer Space Telescope. An arrow points to the embryonic star, called HOPS-68. The middle panel illustrates how the olivine crystals are suspected to have been transported into the outer cloud around the developing star, or protostar.


Jets shooting away from the protostar, where temperatures are hot enough to cook the crystals, are thought to have transported them to the outer cloud, where temperatures are much colder. Astronomers say the crystals are raining back down onto the swirling disk of planet-forming dust circling the star, as depicted in the final panel. Image credit: NASA/JPL-Caltech/University of Toledo. For a larger version of this image please go here.

Tiny crystals of a green mineral called olivine are falling down like rain on a burgeoning star, according to observations from NASA's Spitzer Space Telescope. This is the first time such crystals have been observed in the dusty clouds of gas that collapse around forming stars. Astronomers are still debating how the crystals got there, but the most likely culprits are jets of gas blasting away from the embryonic star.

"You need temperatures as hot as lava to make these crystals," said Tom Megeath of the University of Toledo in Ohio. He is the principal investigator of the research and the second author of a new study appearing in Astrophysical Journal Letters.

"We propose that the crystals were cooked up near the surface of the forming star, then carried up into the surrounding cloud where temperatures are much colder, and ultimately fell down again like glitter."

Spitzer's infrared detectors spotted the crystal rain around a distant, sun-like embryonic star, or protostar, referred to as HOPS-68, in the constellation Orion.

The crystals are in the form of forsterite. They belong to the olivine family of silicate minerals and can be found everywhere from a periodot gemstone to the green sand beaches of Hawaii to remote galaxies. NASA's Stardust and Deep Impact missions both detected the crystals in their close-up studies of comets.

"If you could somehow transport yourself inside this protostar's collapsing gas cloud, it would be very dark," said Charles Poteet, lead author of the new study, also from the University of Toledo. "But the tiny crystals might catch whatever light is present, resulting in a green sparkle against a black, dusty backdrop."

Forsterite crystals were spotted before in the swirling, planet-forming disks that surround young stars. The discovery of the crystals in the outer collapsing cloud of a proto-star is surprising because of the cloud's colder temperatures, about minus 280 degrees Fahrenheit (minus 170 degrees Celsius). This led the team of astronomers to speculate the jets may in fact be transporting the cooked-up crystals to the chilly outer cloud.

The findings might also explain why comets, which form in the frigid outskirts of our solar system, contain the same type of crystals. Comets are born in regions where water is frozen, much colder than the searing temperatures needed to form the crystals, approximately 1,300 degrees Fahrenheit (700 degrees Celsius).

The leading theory on how comets acquired the crystals is that materials in our young solar system mingled together in a planet-forming disk. In this scenario, materials that formed near the sun, such as the crystals, eventually migrated out to the outer, cooler regions of the solar system.

Poteet and his colleagues say this scenario could still be true but speculate that jets might have lifted crystals into the collapsing cloud of gas surrounding our early sun before raining onto the outer regions of our forming solar system.

Eventually, the crystals would have been frozen into comets. The Herschel Space Observatory, a European Space Agency-led mission with important NASA contributions, also participated in the study by characterizing the forming star.

"Infrared telescopes such as Spitzer and now Herschel are providing an exciting picture of how all the ingredients of the cosmic stew that makes planetary systems are blended together," said Bill Danchi, senior astrophysicist and program scientist at NASA Headquarters in Washington.

The Spitzer observations were made before it used up its liquid coolant in May 2009 and began its warm mission.

.


Related Links
Spitzer
Space Telescope News and Technology at Skynightly.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SPACE SCOPES
NASA's Hubble Finds Rare 'Blue Straggler' Stars in Milky Way's Hub
Boston MA (SPX) May 27, 2011
NASA's Hubble Space Telescope has found a rare class of oddball stars called blue stragglers in the hub of our Milky Way, the first detected within our galaxy's bulge. Blue stragglers are so named because they seemingly lag behind in the aging process, appearing younger than the population from which they formed. While they have been detected in many distant star clusters, and among nearby ... read more


SPACE SCOPES
NASA-Funded Scientists Make Watershed Lunar Discovery

Moon may have more water than believed: study

President Kennedy's Speech and America's Next Moonshot Moment

Twin GRAIL Spacecraft to Launch Site by Lockheed Martin

SPACE SCOPES
Mars Formed Rapidly into Runt of Planetary Litter

NASA's Spirit Rover Completes Mission on Mars

Sibling rivalry: Why Mars became a planetary runt

Mars Science Laboratory Mission Status Report

SPACE SCOPES
ATV-4 to carry name Albert Einstein

New deep space vehicle to be based on Orion: NASA

NASA Announces Key Decision For Next Deep Space Transportation System

Welcome home, Paolo!

SPACE SCOPES
Venezuela, China to launch satellite next year

Top Chinese scientists honored with naming of minor planets

China sees smooth preparation for launch of unmanned module

China to attempt first space rendezvous

SPACE SCOPES
Final Endeavour spacewalk marks 1,000 hours of station EVAs

Fourth and Final Shuttle Astronaut Spacewalk Set

Astronauts test new exercises on space walk

Spacewalkers Outfit Station

SPACE SCOPES
ASTRA 1N delivered to French Guiana

Russia sends two Soyuz carrier rockets to French Guiana

ILS Proton Successfully Launches Telstar 14R And Estrela do Sul 2 for Telesat

Satellites for Asia and India are orbited on Arianespace's third Ariane 5 mission of 2011

SPACE SCOPES
Kepler's Astounding Haul of Multiple-Planet Systems Just Keeps Growing

Bennett team discovers new class of extrasolar planets

Climate scientists reveal new candidate for first habitable exoplanet

Free-Floating Planets May be More Common Than Stars

SPACE SCOPES
Tablets, 3D in focus at future-shaping Taiwan IT show

China to establish rare earths exchange

Expert discovers simple method of dealing with harmful radioactive iodine

West Coast Radar Network is World's Largest




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement